981 resultados para symplectic, Lagrangian fibration, Hodge theory, deformation, hyperkähler manifold
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The problem of a spacecraft orbiting the Neptune-Triton system is presented. The new ingredients in this restricted three body problem are the Neptune oblateness and the high inclined and retrograde motion of Triton. First we present some interesting simulations showing the role played by the oblateness on a Neptune's satellite, disturbed by Triton. We also give an extensive numerical exploration in the case when the spacecraft orbits Triton, considering Sun, Neptune and its planetary oblateness as disturbers. In the plane a x I (a = semi-major axis, I = inclination), we give a plot of the stable regions where the massless body can survive for thousand of years. Retrograde and direct orbits were considered and as usual, the region of stability is much more significant for the case of direct orbit of the spacecraft (Triton's orbit is retrograde). Next we explore the dynamics in a vicinity of the Lagrangian points. The Birkhoff normalization is constructed around L-2, followed by its reduction to the center manifold. In this reduced dynamics, a convenient Poincare section shows the interplay of the Lyapunov and halo periodic orbits, Lissajous and quasi-halo tori as well as the stable and unstable manifolds of the planar Lyapunov orbit. To show the effect of the oblateness, the planar Lyapunov family emanating from the Lagrangian points and three-dimensional halo orbits are obtained by the numerical continuation method. Published by Elsevier Ltd. on behalf of COSPAR.
Resumo:
An alternative theoretical method to simulate the structural deformation induced by Mn-doping in BaTiO3 is proposed. The periodic quantum-mechanical method is based on density functional theory at B3LYP level. The structural models were obtained from Rietveld refinement of the undoped and Mn doped BaTiO3 X-ray diffraction data. This modelization gives access to the dopant General effect on the electronic structure. In fact, the influence of the doing element itself on the electronic configuration is barely local: therefore, it is not included in the simulation. The simplicity of the model makes it available for working within a wide range of materials.(C) 2004 Published bv Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
We prove that every robustly transitive and every stably ergodic symplectic diffeomorphism on a compact manifold admits a dominated splitting. In fact, these diffeomorphisms are partially hyperbolic. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011
Resumo:
The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.
Resumo:
The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.
Resumo:
In this letter we apply an alternative approach, recently developed, to the description of massless particles of arbitrary spin to the case of spin-two particles. This provides a non-geometrical approach to the theory of linearized gravitation. Within this method the chiral components of a spinor field are treated as independent field variables. The free field Lagrangian is built up from the requirement of chiral invariance. This formulation is parallel to the neutrino theory and leads to a formulation that generalizes, to particles of spin-two, the two-component neutrino theory. At the free field level the analog of curvature tensor, spin connection tensor, and metric tensor are independent quantities. By introducing left-right asymmetric linear interactions of these chiral components we get the linearized gravitation theory.
Resumo:
We generalize a previous work on Dirac eigenvalues as dynamical variables of Euclidean supergravity. The most general set of constraints on the curvatures of the tangent bundle and on the spinor bundle of the space-time manifold, under which space-time admits Dirac eigenvalues as observables, are derived.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
We have analyzed the null-plane canonical structure of Podolsky's electromagnetic theory. As a theory that contains higher order derivatives in the Lagrangian function, it was necessary to redefine the canonical momenta related to the field variables. We were able to find a set of first and second-class constraints, and also to derive the field equations of the system. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)