888 resultados para swarm intelligence
Resumo:
Based on the paper presented at the International Conference “Autonomous Systems: inter-relations of technical and societal issues”, organized by IET with the support of the Portuguese-German collaboration project on “Technology Assessment of Autonomous Robotics” (DAAD/CRUP) at FCT-UNL, Biblioteca da UNL, Campus de Caparica on 5-6 November 2009.
Resumo:
Comunicação apresentada na 6ª CAPSI - Conferência da Associação Portuguesa de Sistemas de Informação - Escola Superior de Tecnologia de Bragança, 26-28 de Outubro.
Resumo:
Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
Purpose: This work aims at further developing and testing the psychometric properties of the Cultural Intelligence Scale (Ang & Van Dyne, 2006) in an Erasmus Mundus Students and Alumni Population, including reliability. Design Methodology: The study included 626 participants from 109 different countries that emcompasses 6 continents. Exploratory and Confirmatory Factor Analysis procedures were carried out in order to test the scale in a multicultural scale of Erasmus Mundus Students. Reliability was assessed using Cronbach Alpha. Results: The scale presents excellent psychometric properties with alpha values that range from .84 to .90. Exploratory and Confirmatory Factor Analyses demonstrated that the original model of the scale presents an exceptionally good fit. Limitations: The present study was conducted using a convenience sample and online questionnaires that limit its conclusions when we consider the globality of the Erasmus Mundus Students. Research/Practical Implications: This study presents evidence that Ang and Van Dyne’s scale is an adequate measure instrument to assess intercultural intelligence in a multicultural setting of students and alumni. Originality/Value: Multicultural samples and studies are becoming more and more present and relevant; the study of intercultural competences and habilities is becoming increasingly important, and in this task, solid psychometric instruments are of paramount importance. This study presents evidence that Ang and Van Dyne’s (2006) scale is a fairly recent and parsimonious instrument with excellent psychometric properties properties.
Resumo:
Erasmus Mundus Masters (EMM) are programs with a strong component of interculturality. Our study aimed at understanding the level of cultural intelligence (CQ) of EMM students and alumni, as well as some of the characteristics associated with higher levels of CQ. The study included 626 EMM students and alumni from 109 different countries that encompasses 6 continents. Ang and Van Dyne’s (2006) cultural intelligence scale was used; closed and open ended questions were used to describe the sample’s sociodemographic characteristics and experiences regarding interculturality. After validating and assessing the scale’s psychometric properties, relations between different variables were explored using Pearson’s correlation, ANOVA, t Tests, and GLM procedures. We then analysed the open ended responses to gain further insight on our results. Differences among respondents are mainly equated with international experience rather than nationality or training. Respondents’ open ended replies provided us with a deeper insight on why training seems to be so ineffective in developing CQ. This is a transversal study that uses self-reporting measures; also, questionnaires were conducted in English, which was not the mother tongue of most of the respondents. This work is consistent with the CQ literature, however we argue that training mentioned by respondents systematically fails to meet some of literature’s foremost conditions for effective CQ trainings and provide clues for the implementation of more successful initiatives. With an exceptionally diverse sample, this study contributes towards the understanding of mechanisms of developing CQ among EMM and international Students. Results can be useful for selection processes, training/development of CQ and reducing dropout/turnover.