984 resultados para stochastic simulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical swine fever (CSF) outbreaks can cause enormous losses in naïve pig populations. How to best minimize the economic damage and number of culled animals caused by CSF is therefore an important research area. The baseline CSF control strategy in the European Union and Switzerland consists of culling all animals in infected herds, movement restrictions for animals, material and people within a given distance to the infected herd and epidemiological tracing of transmission contacts. Additional disease control measures such as pre-emptive culling or vaccination have been recommended based on the results from several simulation models; however, these models were parameterized for areas with high animal densities. The objective of this study was to explore whether pre-emptive culling and emergency vaccination should also be recommended in low- to moderate-density areas such as Switzerland. Additionally, we studied the influence of initial outbreak conditions on outbreak severity to improve the efficiency of disease prevention and surveillance. A spatial, stochastic, individual-animal-based simulation model using all registered Swiss pig premises in 2009 (n=9770) was implemented to quantify these relationships. The model simulates within-herd and between-herd transmission (direct and indirect contacts and local area spread). By varying the four parameters (a) control measures, (b) index herd type (breeding, fattening, weaning or mixed herd), (c) detection delay for secondary cases during an outbreak and (d) contact tracing probability, 112 distinct scenarios were simulated. To assess the impact of scenarios on outbreak severity, daily transmission rates were compared between scenarios. Compared with the baseline strategy (stamping out and movement restrictions) vaccination and pre-emptive culling neither reduced outbreak size nor duration. Outbreaks starting in a herd with weaning piglets or fattening pigs caused higher losses regarding to the number of culled premises and were longer lasting than those starting in the two other index herd types. Similarly, larger transmission rates were estimated for these index herd type outbreaks. A longer detection delay resulted in more culled premises and longer duration and better transmission tracing increased the number of short outbreaks. Based on the simulation results, baseline control strategies seem sufficient to control CSF in low-medium animal-dense areas. Early detection of outbreaks is crucial and risk-based surveillance should be focused on weaning piglet and fattening pig premises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, steady economic growth rates have been kept in Poland and Hungary. Money supplies are growing rather rapidly in these economies. In large, exchange rates have trends of depreciation. Then, exports and prices show the steady growth rates. It can be thought that per capita GDPs are in the same level and development stages are similar in these two countries. It is assumed that these two economies have the same export market and export goods are competing in it. If one country has an expansion of monetary policy, price increase and interest rate decrease. Then, exchange rate decrease. Exports and GDP will increase through this phenomenon. At the same time, this expanded monetary policy affects another country through the trade. This mutual relationship between two countries can be expressed by the Nash-equilibrium in the Game theory. In this paper, macro-econometric models of Polish and Hungarian economies are built and the Nash- equilibrium is introduced into them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cébalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model to an economic optimisation model. A crop growth simulation model (CropSyst) was used to build a database to determine the relationships between agricultural practices, crop yields and environmental effects (salt accumulation in soil and leaching of nitrates) in a context of high climatic variability. The database was then fed into a recursive stochastic model set for a 10-year plan that allowed analysing the effects of cropping patterns on farm income, salt accumulation and nitrate leaching. We assumed that the long-term sustainability of soil productivity might be in conflict with farm profitability in the short-term. Assuming a discount rate of 10% (for the base scenario), the model closely reproduced the current system and allowed to predict the degradation of soil quality due to long-term salt accumulation. The results showed that there was more accumulation of salt in the soil for the base scenario than for the alternative scenario (discount rate of 0%). This result was induced by applying a higher quantity of water per hectare for the alternative as compared to a base scenario. The results also showed that nitrogen leaching is very low for the two discount rates and all climate scenarios. In conclusion, the results show that the difference in farm income between the alternative and base scenarios increases over time to attain 45% after 10 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.