963 resultados para stochastic expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying railway capacity is an important task that can identify "in principal" whether the network can handle an intended traffic flow, and whether there is any free capacity left for additional train services. Capacity determination techniques can also be used to identify how best to improve an existing network, and at least cost. In this article an optimization approach has been applied to a case study of the Iran national railway, in order to identify its current capacity and to optimally expand it given a variety of technical conditions. This railway is very important in Iran and will be upgraded extensively in the coming years. Hence the conclusions in this article may help in that endeavor. A sensitivity analysis is recommended to evaluate a wider range of possible scenarios. Hence more useful lower and upper bounds can be provided for the performance of the system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the impact of allowing for stochastic volatility and jumps (SVJ) in a structural model on corporate credit risk prediction. The results from a simulation study verify the better performance of the SVJ model compared with the commonly used Merton model, and three sources are provided to explain the superiority. The empirical analysis on two real samples further ascertains the importance of recognizing the stochastic volatility and jumps by showing that the SVJ model decreases bias in spread prediction from the Merton model, and better explains the time variation in actual CDS spreads. The improvements are found particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law