979 resultados para stable distribution
Resumo:
Planktonic foraminiferal assemblages and artificial neural network estimates of sea-surface temperature (SST) at ODP Site 1123 (41°47.2'S, 171°29.9'W; 3290 m deep), east of New Zealand, reveal a high-resolution history of glacial-interglacial (G-I) variability at the Subtropical Front (STF) for the last 1.2 million years, including the Mid-Pleistocene climate transition (MPT). Most G-I cycles of ~100 kyr duration have short periods of cold glacial and warm deglacial climate centred on glacial terminations, followed by long temperate interglacial periods. During glacial-deglacial transitions, maximum abundances of subantarctic and subtropical taxa coincide with SST minima and maxima, and lead ice volume by up to 8 kyrs. Such relationships reflect the competing influence of subantarctic and subtropical surface inflows during glacial and deglacial periods, respectively, suggesting alternate polar and tropical forcing of southern mid-latitude ocean climate. The lead of SSTs and subtropical inflow over ice volume points to tropical forcing of southern mid-latitude ocean-climate during deglacial warming. This contrasts with the established hypothesis that southern hemisphere ocean climate is driven by the influence of continental glaciations. Based on wholesale changes in subantarctic and subtropical faunas, the last 1.2 million years are subdivided into 4-distinct periods of ocean climate. 1) The pre-MPT (1185-870 ka) has high amplitude 41-kyr fluctuations in SST, superimposed on a general cooling trend and heightened productivity, reflecting long-term strengthening of subantarctic inflow under an invigorated Antarctic Circumpolar Current. 2) The early MPT (870-620 ka) is marked by abrupt warming during MIS 21, followed by a period of unstable periodicities within the 40-100 kyr orbital bands, decreasing SST amplitudes, and long intervals of temperate interglacial climate punctuated by short glacial and deglacial phases, reflecting lower meridional temperature gradients. 3) The late MPT (620-435 ka) encompasses an abrupt decrease in the subantarctic inflow during MIS 15, followed by a period of warm equable climate. Poorly defined, low amplitude G-I variations in SSTs during this interval are consistent with a relatively stable STF and evenly balanced subantarctic and subtropical inflows, possibly in response to smaller, less dynamic polar icesheets. 4) The post-MPT (435-0 ka) is marked by a major climatic deterioration during MIS 12, and a return to higher amplitude 100 kyr-frequency SST variations, superimposed on a long term trend towards cooler SSTs and increased mixed-layer productivity as the subantarctic inflow strengthened and polar icesheets expanded.
Mineralogy and stable isotopic composition of carbonates and sulfide minerals from ODP Leg 164 sites
Resumo:
During Ocean Drilling Program Leg 164, gas hydrates were recovered in the Blake Ridge where the top of the gas hydrate zone lies at about 200 meters below seafloor (mbsf) and the bottom-simulating reflector (BSR) is located at about 450 mbsf. There is no sedimentological discontinuity crossing the BSR. The BSR is disrupted by the salt piercement of the Cape Fear Diapir. The authigenic carbonates (dolomite and siderite) are always present in small amounts (a few weight percent) in the sediments; they are also concentrated in millimeter- to centimeter-sized nodules and layers composed of dolomite above the top of the gas hydrate reservoir, and of siderite below the BSR. In the Blake Ridge, the dolomite/siderite boundary is located near 140 mbsf. The distribution with depth of the d18O values of dolomite and siderite shows a sharp decrease from high values (maximum 7.5 per mil) in the topmost 50 m, to very low values (minimum -2.7 per mil) at 140 mbsf, and at greater depth increase to positive values within the range of 1.8 per mil to 5.0 per mil. The d13C distribution is marked by the rapid increase with greater depth from low values (-31.3 per mil to -11.4 per mil) near 50 mbsf to positive values at 110 mbsf, which remain in the range of 1.7 to 5.4 down to 700 mbsf. Diagenetic carbonates were precipitated in pore waters in which d18O and d13C values were highly modified by strong fractionation effects, both in the water and in the CO2-CH4 systems associated with the formation and dissociation of gas hydrates.
Resumo:
We report new data on oxygen isotopes in marine sulfate (delta18O[SO4]), measured in marine barite (BaSO4), over the Cenozoic. The delta18O[SO4] varies by 6x over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The delta18O[SO4] does not co-vary with the delta18O[SO4], emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the delta18O[SO4] over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The delta18O[SO4] also does not co-vary with the d18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the delta18O[SO4] to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the delta18O[SO4]. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.
Resumo:
We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70-90%. The shell delta18O and delta13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (delta18O(eq)) and to the carbon isotope composition of the total dissolved inorganic carbon (delta13C(DIC)) of seawater. The delta18O of G. inflata reflects the general gradient observed in the predicted delta18O(eq) profile, while the delta13C of G. inflata shows almost no variation with depth and the reflection of the delta13C(DIC) in the foraminiferal shell seems to be covered by other effects. We found that offsets between delta18O(shell) and predicted delta18O(eq) in the surface mixed layer do not correlate to changes in seawater [CO3[2-]]. To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the DELTA delta13C(interval added-DIC); i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the DELTA delta13C(IA-DIC) correlates negatively with in situ measured [CO3[2-]] of the ambient water. Using this approach, we found DELTA delta13C(IA-DIC)/[CO3[2-]] slopes for G. inflata in the large size fraction (250-355 µm) of -0.013 per mil to 0.015 per mil (µmol/kg)**-1 and of -0.013 per mil to 0.017 per mil (µmol/kg)**-1 for the smaller specimens (150-250 µm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the DELTA delta13C(IA-DIC)/[CO3[2-]] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the delta13C values of G. inflata for a carbonate ion effect, the delta13C(shell) and delta13C(DIC) are correlated with an average offset of 2.11.
Resumo:
The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.
Resumo:
Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.