986 resultados para spatial processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development, with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings: In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal beta-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal b-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions: Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigating tree's spatial patterns according to their size classes and according to their more abundant species can provide evidences about the structure of the vegetal community, since the spatial pattern is a key question for forestry ecology studies. The tree spatial organization patterns on the environment depend on several ecological processes and on the specific characteristics of each environment, so that the best understanding of this frame provides important elements for the knowledge on forestry formation. This paper aimed to study tree spatial patterns, according to the diameter classes and from four most abundant species in different forests, in order to provide evidences regarding to the ecology of each vegetal community. The spatial pattern description in each forestry formation was developed using Ripley's K function. The studied forestry formations were: Ombrophilous Forest, Cerradao, Seasonal Forest and Restinga Forest. In this work, a 10.24 ha plot was installed in each forestry formation, and every tree, with a circumference at breast height (CBH) larger than 15 cm were measured, georeferenced and identified. The obtained data highlights the aggregated character in tropical forests, as observed in every studied forest. The 'Cerraddo' and 'Restinga' forest trees showed close aggregate patterns. In the Ombrophilous forest, for all distance scales, the aggregate pattern was meaningful. In the seasonal forest, a random tendency was observed, although a meaningful aggregation was observed in all short distances. The spatial pattern by diameter classes was generally aggregated for trees smaller than 10 cm of diameter and between 10 and 20 cm and random for the others, proving the existence of a tendency which in young trees is more aggregated than in old ones. The spatial pattern of the dominant species is always strongly similar to the general pattern of each forestry formation. The differences between the spatial patterns of two or three coincident species, among the forestry formations, indicate that its pattern is influenced by each different environment. This stands out the importance of its self-ecology and of its ecological processes, intrinsic of each community that can explain the observed patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a detailed account of the spatial structure of the Brazilian sardine (Sardinella brasiliensis) spawning and nursery habitats, using ichthyoplankton data from nine surveys (1976-1993) covering the Southeastern Brazilian Bight (SBB). The spatial variability of sardine eggs and larvae was partitioned into predefined spatial-scale classes (broad scale, 200-500 km; medium scale, 50-100 km; and local scale, <50 km). The relationship between density distributions at both developmental stages and environmental descriptors (temperature and salinity) was also explored within these spatial scales. Spatial distributions of sardine eggs were mostly structured on medium and local scales, while larvae were characterized by broad-and medium-scale distributions. Broad-and medium-scale surface temperatures were positively correlated with sardine densities, for both developmental stages. Correlations with salinity were predominantly negative and concentrated on a medium scale. Broad-scale structuring might be explained by mesoscale processes, such as pulsing upwelling events and Brazil Current meandering at the northern portion of the SBB, while medium-scale relationships may be associated with local estuarine outflows. The results indicate that processes favouring vertical stability might regulate the spatial extensions of suitable spawning and nursery habitats for the Brazilian sardine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Spatial variability of wave energy resource around the coastal waters of the Canary Archipelago is assessed by using a long-term data set derived by means of hindcasting techniques. Results revea( the existence of large differences in the energetic content available in different zones of the archipelago, mainly during spring and autumn. Areas with a higher wave power leve( are the north edge of Lanzarote, western side of Lanzarote and Fuerteventura, north and northwest in La Palma and El Hierro, as well as the north coast of Tenerife. The available energy potential slightly decreases in the north side of Gran Canaria and La Gomera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intensity of regional specialization in specific activities, and conversely, the level of industrial concentration in specific locations, has been used as a complementary evidence for the existence and significance of externalities. Additionally, economists have mainly focused the debate on disentangling the sources of specialization and concentration processes according to three vectors: natural advantages, internal, and external scale economies. The arbitrariness of partitions plays a key role in capturing these effects, while the selection of the partition would have to reflect the actual characteristics of the economy. Thus, the identification of spatial boundaries to measure specialization becomes critical, since most likely the model will be adapted to different scales of distance, and be influenced by different types of externalities or economies of agglomeration, which are based on the mechanisms of interaction with particular requirements of spatial proximity. This work is based on the analysis of the spatial aspect of economic specialization supported by the manufacturing industry case. The main objective is to propose, for discrete and continuous space: i) a measure of global specialization; ii) a local disaggregation of the global measure; and iii) a spatial clustering method for the identification of specialized agglomerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proxy data are essential for the investigation of climate variability on time scales larger than the historical meteorological observation period. The potential value of a proxy depends on our ability to understand and quantify the physical processes that relate the corresponding climate parameter and the signal in the proxy archive. These processes can be explored under present-day conditions. In this thesis, both statistical and physical models are applied for their analysis, focusing on two specific types of proxies, lake sediment data and stable water isotopes.rnIn the first part of this work, the basis is established for statistically calibrating new proxies from lake sediments in western Germany. A comprehensive meteorological and hydrological data set is compiled and statistically analyzed. In this way, meteorological times series are identified that can be applied for the calibration of various climate proxies. A particular focus is laid on the investigation of extreme weather events, which have rarely been the objective of paleoclimate reconstructions so far. Subsequently, a concrete example of a proxy calibration is presented. Maxima in the quartz grain concentration from a lake sediment core are compared to recent windstorms. The latter are identified from the meteorological data with the help of a newly developed windstorm index, combining local measurements and reanalysis data. The statistical significance of the correlation between extreme windstorms and signals in the sediment is verified with the help of a Monte Carlo method. This correlation is fundamental for employing lake sediment data as a new proxy to reconstruct windstorm records of the geological past.rnThe second part of this thesis deals with the analysis and simulation of stable water isotopes in atmospheric vapor on daily time scales. In this way, a better understanding of the physical processes determining these isotope ratios can be obtained, which is an important prerequisite for the interpretation of isotope data from ice cores and the reconstruction of past temperature. In particular, the focus here is on the deuterium excess and its relation to the environmental conditions during evaporation of water from the ocean. As a basis for the diagnostic analysis and for evaluating the simulations, isotope measurements from Rehovot (Israel) are used, provided by the Weizmann Institute of Science. First, a Lagrangian moisture source diagnostic is employed in order to establish quantitative linkages between the measurements and the evaporation conditions of the vapor (and thus to calibrate the isotope signal). A strong negative correlation between relative humidity in the source regions and measured deuterium excess is found. On the contrary, sea surface temperature in the evaporation regions does not correlate well with deuterium excess. Although requiring confirmation by isotope data from different regions and longer time scales, this weak correlation might be of major importance for the reconstruction of moisture source temperatures from ice core data. Second, the Lagrangian source diagnostic is combined with a Craig-Gordon fractionation parameterization for the identified evaporation events in order to simulate the isotope ratios at Rehovot. In this way, the Craig-Gordon model can be directly evaluated with atmospheric isotope data, and better constraints for uncertain model parameters can be obtained. A comparison of the simulated deuterium excess with the measurements reveals that a much better agreement can be achieved using a wind speed independent formulation of the non-equilibrium fractionation factor instead of the classical parameterization introduced by Merlivat and Jouzel, which is widely applied in isotope GCMs. Finally, the first steps of the implementation of water isotope physics in the limited-area COSMO model are described, and an approach is outlined that allows to compare simulated isotope ratios to measurements in an event-based manner by using a water tagging technique. The good agreement between model results from several case studies and measurements at Rehovot demonstrates the applicability of the approach. Because the model can be run with high, potentially cloud-resolving spatial resolution, and because it contains sophisticated parameterizations of many atmospheric processes, a complete implementation of isotope physics will allow detailed, process-oriented studies of the complex variability of stable isotopes in atmospheric waters in future research.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we consider systems of finitely many particles moving on paths given by a strong Markov process and undergoing branching and reproduction at random times. The branching rate of a particle, its number of offspring and their spatial distribution are allowed to depend on the particle's position and possibly on the configuration of coexisting particles. In addition there is immigration of new particles, with the rate of immigration and the distribution of immigrants possibly depending on the configuration of pre-existing particles as well. In the first two chapters of this work, we concentrate on the case that the joint motion of particles is governed by a diffusion with interacting components. The resulting process of particle configurations was studied by E. Löcherbach (2002, 2004) and is known as a branching diffusion with immigration (BDI). Chapter 1 contains a detailed introduction of the basic model assumptions, in particular an assumption of ergodicity which guarantees that the BDI process is positive Harris recurrent with finite invariant measure on the configuration space. This object and a closely related quantity, namely the invariant occupation measure on the single-particle space, are investigated in Chapter 2 where we study the problem of the existence of Lebesgue-densities with nice regularity properties. For example, it turns out that the existence of a continuous density for the invariant measure depends on the mechanism by which newborn particles are distributed in space, namely whether branching particles reproduce at their death position or their offspring are distributed according to an absolutely continuous transition kernel. In Chapter 3, we assume that the quantities defining the model depend only on the spatial position but not on the configuration of coexisting particles. In this framework (which was considered by Höpfner and Löcherbach (2005) in the special case that branching particles reproduce at their death position), the particle motions are independent, and we can allow for more general Markov processes instead of diffusions. The resulting configuration process is a branching Markov process in the sense introduced by Ikeda, Nagasawa and Watanabe (1968), complemented by an immigration mechanism. Generalizing results obtained by Höpfner and Löcherbach (2005), we give sufficient conditions for ergodicity in the sense of positive recurrence of the configuration process and finiteness of the invariant occupation measure in the case of general particle motions and offspring distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few decades the impacts of climate warming have been significant in alpine glaciated regions. Many valley glaciers formerly linked as distributary glaciers to high-level icecaps have decoupled at their icefalls, exposing major escarpments and generating a suite of dynamic landforrns dominated by mass wasting. Ice-dominated landforms, here termed icy debris fans, develop rapidly by ice avalanching, rockfall, and icy debris flow. Field-based reconnaissance studies at two alpine settings, the Wrangell Mountains of Alaska and the Southern Alps of New Zealand, provide a preliminary morphogenetic model of spatial and temporal evolution of icy debris fans in a range of alpine settings. The influence of these processes on landform evolution is largely unrecognized in the literature dealing with post-glacial landform adjustment known as the paraglacial. A better understanding of these dynamic processes will be increasingly important because of the extreme geohazards characterizing these areas. Our field studies show that after glacier decoupling, icy debris fans begin to form along the base of bedrock escarpments at the mouths of catchments and prograde over valley glaciers. The presence of a distinct catchment, apex, and fan morphology distinguishes these landforms from other landforms common in periglacial hillslope settings receiving abundant clastic debris and ice. Ice avalanching is the most abundant process involved in icy debris fan formation. Fans developed below weakly incised catchments are dominated by ice avalanching and are composed primarily of ice with minor lithic detritus. Typically, avalanches fall into the fan catchments where sediments transform into grainflows that flow onto the fans. Once on the fans, avalanche deposits ablate rapidly, flattening and concentrating lithic fragments at the surface. Icy debris fans may become thick enough to become glaciers with splay crevasse systems. Fans developed below larger, more complex catchments are composed of higher proportions of lithic detritus resulting from temporary storage of ice and lithic detritus deposits within the catchment. Episodic outbursts of meltwater from the icecap may mix with the stored sediments and mobilize icy debris flows (mixture of ice and lithic clasts) onto the fans. Our observations indicate that the entire evolutionary cycle of icy debris fans probably occurs during an early paraglacial interval (i.e., decades to 100 years). Observations comparing avalanche frequency, volume, and fan morphologic evolution at the Alaska site between 2006 and 2010 illustrate complex response between icy debris fans even within the same cirque - where one fan may be growing while others are downwasting because of differences in ice supply controlled by their respective catchments and icecap contributions. As ice supply from the icecap diminishes through time, icy debris fans rapidly downwaste and eventually evolve into talus cones that receive occasional but ephemeral ice avalanches.