989 resultados para sequential frequent pattern


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on students’ mathematical development. The study involved 316 Kindergarten students in 17 classes from four schools in Sydney and Brisbane. The development of the PASA assessment interview and scale are presented. The intervention program provided explicit instruction in mathematical pattern and structure that enhanced the development of students’ spatial structuring, multiplicative reasoning, and emergent generalisations. This paper presents the initial findings of the impact of the PASMAP and illustrates students’ structural development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within Australia, motor vehicle injury is the leading cause of hospital admissions and fatalities. Road crash data reveals that among the factors contributing to crashes in Queensland, speed and alcohol continue to be overrepresented. While alcohol is the number one contributing factor to fatal crashes, speeding also contributes to a high proportion of crashes. Research indicates that risky driving is an important contributor to road crashes. However, it has been debated whether all risky driving behaviours are similar enough to be explained by the same combination of factors. Further, road safety authorities have traditionally relied upon deterrence based countermeasures to reduce the incidence of illegal driving behaviours such as speeding and drink driving. However, more recent research has focussed on social factors to explain illegal driving behaviours. The purpose of this research was to examine and compare the psychological, legal, and social factors contributing to two illegal driving behaviours: exceeding the posted speed limit and driving when over the legal blood alcohol concentration (BAC) for the drivers licence type. Complementary theoretical perspectives were chosen to comprehensively examine these two behaviours including Akers’ social learning theory, Stafford and Warr’s expanded deterrence theory, and personality perspectives encompassing alcohol misuse, sensation seeking, and Type-A behaviour pattern. The program of research consisted of two phases: a preliminary pilot study, and the main quantitative phase. The preliminary pilot study was undertaken to inform the development of the quantitative study and to ensure the clarity of the theoretical constructs operationalised in this research. Semi-structured interviews were conducted with 11 Queensland drivers recruited from Queensland Transport Licensing Centres and Queensland University of Technology (QUT). These interviews demonstrated that the majority of participants had engaged in at least one of the behaviours, or knew of someone who had. It was also found among these drivers that the social environment in which both behaviours operated, including family and friends, and the social rewards and punishments associated with the behaviours, are important in their decision making. The main quantitative phase of the research involved a cross-sectional survey of 547 Queensland licensed drivers. The aim of this study was to determine the relationship between speeding and drink driving and whether there were any similarities or differences in the factors that contribute to a driver’s decision to engage in one or the other. A comparison of the participants self-reported speeding and self-reported drink driving behaviour demonstrated that there was a weak positive association between these two behaviours. Further, participants reported engaging in more frequent speeding at both low (i.e., up to 10 kilometres per hour) and high (i.e., 10 kilometres per hour or more) levels, than engaging in drink driving behaviour. It was noted that those who indicated they drove when they may be over the legal limit for their licence type, more frequently exceeded the posted speed limit by 10 kilometres per hour or more than those who complied with the regulatory limits for drink driving. A series of regression analyses were conducted to investigate the factors that predict self-reported speeding, self-reported drink driving, and the preparedness to engage in both behaviours. In relation to self-reported speeding (n = 465), it was found that among the sociodemographic and person-related factors, younger drivers and those who score high on measures of sensation seeking were more likely to report exceeding the posted speed limit. In addition, among the legal and psychosocial factors it was observed that direct exposure to punishment (i.e., being detected by police), direct punishment avoidance (i.e., engaging in an illegal driving behaviour and not being detected by police), personal definitions (i.e., personal orientation or attitudes toward the behaviour), both the normative and behavioural dimensions of differential association (i.e., refers to both the orientation or attitude of their friends and family, as well as the behaviour of these individuals), and anticipated punishments were significant predictors of self-reported speeding. It was interesting to note that associating with significant others who held unfavourable definitions towards speeding (the normative dimension of differential association) and anticipating punishments from others were both significant predictors of a reduction in self-reported speeding. In relation to self-reported drink driving (n = 462), a logistic regression analysis indicated that there were a number of significant predictors which increased the likelihood of whether participants had driven in the last six months when they thought they may have been over the legal alcohol limit. These included: experiences of direct punishment avoidance; having a family member convicted of drink driving; higher levels of Type-A behaviour pattern; greater alcohol misuse (as measured by the AUDIT); and the normative dimension of differential association (i.e., associating with others who held favourable attitudes to drink driving). A final logistic regression analysis examined the predictors of whether the participants reported engaging in both drink driving and speeding versus those who reported engaging in only speeding (the more common of the two behaviours) (n = 465). It was found that experiences of punishment avoidance for speeding decreased the likelihood of engaging in both speeding and drink driving; whereas in the case of drink driving, direct punishment avoidance increased the likelihood of engaging in both behaviours. It was also noted that holding favourable personal definitions toward speeding and drink driving, as well as higher levels of on Type-A behaviour pattern, and greater alcohol misuse significantly increased the likelihood of engaging in both speeding and drink driving. This research has demonstrated that the compliance with the regulatory limits was much higher for drink driving than it was for speeding. It is acknowledged that while speed limits are a fundamental component of speed management practices in Australia, the countermeasures applied to both speeding and drink driving do not appear to elicit the same level of compliance across the driving population. Further, the findings suggest that while the principles underpinning the current regime of deterrence based countermeasures are sound, current enforcement practices are insufficient to force compliance among the driving population, particularly in the case of speeding. Future research should further examine the degree of overlap between speeding and drink driving behaviour and whether punishment avoidance experiences for a specific illegal driving behaviour serve to undermine the deterrent effect of countermeasures aimed at reducing the incidence of another illegal driving behaviour. Furthermore, future work should seek to understand the factors which predict engaging in speeding and drink driving behaviours at the same time. Speeding has shown itself to be a pervasive and persistent behaviour, hence it would be useful to examine why road safety authorities have been successful in convincing the majority of drivers of the dangers of drink driving, but not those associated with speeding. In conclusion, the challenge for road safety practitioners will be to convince drivers that speeding and drink driving are equally risky behaviours, with the ultimate goal to reduce the prevalence of both behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss) were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf) contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP)::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion techniques have received considerable attention for achieving lower error rates with biometrics. A fused classifier architecture based on sequential integration of multi-instance and multi-sample fusion schemes allows controlled trade-off between false alarms and false rejects. Expressions for each type of error for the fused system have previously been derived for the case of statistically independent classifier decisions. It is shown in this paper that the performance of this architecture can be improved by modelling the correlation between classifier decisions. Correlation modelling also enables better tuning of fusion model parameters, ‘N’, the number of classifiers and ‘M’, the number of attempts/samples, and facilitates the determination of error bounds for false rejects and false accepts for each specific user. Error trade-off performance of the architecture is evaluated using HMM based speaker verification on utterances of individual digits. Results show that performance is improved for the case of favourable correlated decisions. The architecture investigated here is directly applicable to speaker verification from spoken digit strings such as credit card numbers in telephone or voice over internet protocol based applications. It is also applicable to other biometric modalities such as finger prints and handwriting samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion techniques have received considerable attention for achieving performance improvement with biometrics. While a multi-sample fusion architecture reduces false rejects, it also increases false accepts. This impact on performance also depends on the nature of subsequent attempts, i.e., random or adaptive. Expressions for error rates are presented and experimentally evaluated in this work by considering the multi-sample fusion architecture for text-dependent speaker verification using HMM based digit dependent speaker models. Analysis incorporating correlation modeling demonstrates that the use of adaptive samples improves overall fusion performance compared to randomly repeated samples. For a text dependent speaker verification system using digit strings, sequential decision fusion of seven instances with three random samples is shown to reduce the overall error of the verification system by 26% which can be further reduced by 6% for adaptive samples. This analysis novel in its treatment of random and adaptive multiple presentations within a sequential fused decision architecture, is also applicable to other biometric modalities such as finger prints and handwriting samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical dependence between classifier decisions is often shown to improve performance over statistically independent decisions. Though the solution for favourable dependence between two classifier decisions has been derived, the theoretical analysis for the general case of 'n' client and impostor decision fusion has not been presented before. This paper presents the expressions developed for favourable dependence of multi-instance and multi-sample fusion schemes that employ 'AND' and 'OR' rules. The expressions are experimentally evaluated by considering the proposed architecture for text-dependent speaker verification using HMM based digit dependent speaker models. The improvement in fusion performance is found to be higher when digit combinations with favourable client and impostor decisions are used for speaker verification. The total error rate of 20% for fusion of independent decisions is reduced to 2.1% for fusion of decisions that are favourable for both client and impostors. The expressions developed here are also applicable to other biometric modalities, such as finger prints and handwriting samples, for reliable identity verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workflow patterns have been recognized as the theoretical basis to modeling recurring problems in workflow systems. A form of workflow patterns, known as the resource patterns, characterise the behaviour of resources in workflow systems. Despite the fact that many resource patterns have been discovered, people still preclude them from many workflow system implementations. One of reasons could be obscurityin the behaviour of and interaction between resources and a workflow management system. Thus, we provide a modelling and visualization approach for the resource patterns, enabling a resource behaviour modeller to intuitively see the specific resource patterns involved in the lifecycle of a workitem. We believe this research can be extended to benefit not only workflow modelling, but also other applications, such as model validation, human resource behaviour modelling, and workflow model visualization.