849 resultados para self-phase modulation
Resumo:
The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.
The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.
Resumo:
Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated. (c) 2007 Optical Society of America.
Resumo:
正弦相位调制(SPM)干涉测量技术用于表面形貌测量时, 需要帧速高于300 frame/s的图像传感器, 同时要求调制信号频率与图像传感器帧速成确定的整数倍关系。提出一种基于低速CCD(30 frame/s)的帧速可调的高速图像传感技术, 通过控制每帧像素总数提高CCD帧速, 研制出一种高帧速图像传感器, 帧速可达300~1600 frame/s, 且每帧大小连续可调。将该CCD传感器用于正弦相位调制干涉泰曼-格林干涉仪, 测量镀膜玻璃板表面形貌, 当CCD图像传感器的帧速与调制信号频率呈16, 8, 4
Resumo:
提出一种实时测量表面形貌的正弦相位调制半导体激光干涉仪。利用实时相位检测电路,从正弦相位调制干涉信号中解出被测量物体表面形貌的相位。在实验中,测量了楔形光学平板的表面形貌,对表面形貌上的60
Resumo:
提出一种基于正切关系和相位调制技术的动态小角度测量方法。使用双棱镜组成干涉测量臂引导两束平行光至分束棱镜处干涉,通过提取携带被测信息的干涉信号的相位实现动态的小角度测量。由于采用位置探测器(PSD)对测量臂中两平行光束的间距进行测量,简化了测量方程,消除了装置中双棱镜必须对称放置的要求。通过正弦地改变半导体激光器的注入电流在时域内实现对干涉信号的相位调制,形成准外差干涉测量模式,提高了光程差的测量精度。实验验证了该方法的可行性,并讨论了影响小角度测量精度的误差因素。研究结果表明,基于该方法的动态小角度的重
Resumo:
基于掺镧锆钛酸铅(PLZT)电光陶瓷材料的光学特性,提出了一种具有上下电极结构的光学相控阵高速光束扫描器。在理论上,分析了具有这种结构的光学相控阵的光束电光偏转特性和机制;在实验上,分析了掺镧锆钛酸铅材料的相位调制特性和损耗特性,制作了相关的光学相控阵器件,并构建了相应的测试系统,获得了光束在空间的角度偏转,与理论分析结果相符。
Resumo:
We found reversible dark-center diffraction of the transmitted probe beam passing through the chromium film. which is induced by the pump femtosecond laser. The dark-center diffraction of I he transmitted probe beam appears and disappears with and without the pump beam. A view of diffractive optics with binary phase plate is put forward, which explains the reversible dark-center diffractive optical phenomenon. The pre-ablated hole on the metal film can be regarded as a uniform light filed without phase modulation, the Surrounding Circular part around the pre-ablated hole can be regarded as "phase modulated". Therefore, this diffraction optic view might be helpful for us to understand the phase change of the metal film introduced by the femtosecond laser pulse. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
提出将空间域的透镜列阵法和时间域的光谱色散平滑法结合起来实现靶面的均匀辐照.消衍射型透镜列阵能获得边缘陡峭且顶部较平坦的准近场焦斑,光谱色散平滑则能有效地抹平焦斑内部由多光束干涉引起的细密条纹.数值结果显示,通过该方案能获得均匀性较好的焦斑.进一步分析了光谱色散平滑单元中位相调制和光栅的参数对辐照均匀性的影响,发现参数的选取要在焦斑均匀性和能量利用率之间取得合理平衡,以在整体上获得最佳的均匀辐照效果.
Resumo:
提出了一种基于光纤环形镜的全光脉冲整形器。该全光脉冲整形器利用波分复用器将控制光脉冲引入光纤环形镜中,控制光脉冲由于交叉相位调制在信号光上产生了非线性附加相移。信号光在耦合器中发生干涉,经过整形的信号光脉冲从脉冲整形器的出射端出射,信号脉冲的波形由非线性附加相移的波形决定。实验中.利用对控制脉冲光谱整形和啁啾展宽的方法来对控制脉冲进行时间脉冲的整形,该全光脉冲整形器实现了对单纵模激光的脉冲整形,同时实现了飞秒脉冲和单纵模整形脉冲的精确同步。在理论上数值计算了该全光脉冲整形器的输出特性,理论计算结果和实验结
Resumo:
为满足激光惯性约束聚变中靶面激光辐照不均匀性低于5%的要求, 在目前使用透镜列阵基础上, 提出了谱色散平滑与透镜列阵联用方案, 对其进行数值计算并分析其平滑效果和应用可行性。结果表明:焦斑的不均匀性从单独使用透镜列阵时的14%降低到与谱色散平滑结合后的3%;对焦斑点功率谱的分析表明谱色散平滑通过抑制焦斑中高频的频谱强度达到平滑效果。该方案可以进一步提高焦斑平滑效果, 计算结果对实际应用有着重要的参考意义。
Resumo:
在起偏器待测波片检偏器系统基础上提出一种四区域测量波片相位延迟量的方法。调整待测波片和检偏器的方位角,获得相应的四组光强值,通过线性运算得到待测波片的相位延迟量,完全消除了起偏器和检偏器不完全消光带来的误差。由于测量系统中不存在标准波片或其他相位调制元件,允许测量波长仅受偏振棱镜和探测器的限制,因此四区域法可适用于很大波长范围内的波片测量。以λ/4波片为例,理论分析了测量系统利用四区域测量法后的仪器误差为σ≤±3.49065×10-3rad(约0.2°),精度比原算法提高约1个数量级。实验验证了四区域法能有效提高系统精度。
Resumo:
This paper reports a detailed theoretical study of the dynamics of wavelength conversion using cross-gain and cross-phase modulation in semiconductor optical amplifiers (SOA's) involving a large signal, multisection rate equation model. Using this model, recently reported experimental results have been correctly predicted and the effects of electrical and optical pumping on the conversion speed, modulation index, and phase variation of the converted signal have been considered. The model predicts, in agreement with experimental data, that recovery rates as low as 12 ps are possible if signal and pump powers in excess of 14 dBm are used. It also indicates that conversion speeds up to 40 Gb/s may be achieved with less than 3 dB dynamic penalty. The employment of cross-phase modulation increases the speed allowing, for example, an improvement to 60 Gb/s with an excess loss penalty less than 1 dB.
Resumo:
We present electro-optic characteristics of a transparent nanophotonic device fabricated on quartz substrate based on multiwall carbon nanotubes and nematic liquid crystals (LCs). The nanotube electrodes spawn a Gaussian electric field to three dimensionally address the LC molecules. The electro-optic characteristics of the device were investigated to optimize the device performance and it was found that lower driving voltages were suitable for microlens array and phase modulation applications, while higher driving voltages with a holding voltage can be used for display-related applications.
Resumo:
We propose a new solid state implementation of a quantum computer (quputer) using ballistic single electrons as flying qubits in 1D nanowires. We use a single electron pump (SEP) to prepare the initial state and a single electron transistor (SET) to measure the final state. Single qubit gates are implemented using quantum dots as phase shifters and electron waveguide couplers as beam splitters. A Coulomb coupler acts as a 2-qubit gate, using a mutual phase modulation effect. Since the electron phase coherence length in GaAs/AlGaAs heterostructures is of the order of 30$\mu$m, several gates (tens) can be implemented before the system decoheres.
Resumo:
We report on our work on producing liquid crystal switchable modal lenses and their use in a compound lens system in order to produce variable focus/zoom lenses. We describe work on producing a high power lens, and present theoretical work on off-axis phase modulation in a liquid crystal lens which is important in order to be able to carry out a complete optical design of a liquid crystal lens.