949 resultados para schema-based reasoning
Resumo:
The paper presents a case study of geo-monitoring a region consisting in the capturing and encoding of human expertise into a knowledge-based system. As soon as the maps have been processed, the data patterns are detected using knowledge-based agents for the harvest prognosis.
Resumo:
Over the past five years, XML has been embraced by both the research and industrial community due to its promising prospects as a new data representation and exchange format on the Internet. The widespread popularity of XML creates an increasing need to store XML data in persistent storage systems and to enable sophisticated XML queries over the data. The currently available approaches to addressing the XML storage and retrieval issue have the limitations of either being not mature enough (e.g. native approaches) or causing inflexibility, a lot of fragmentation and excessive join operations (e.g. non-native approaches such as the relational database approach). ^ In this dissertation, I studied the issue of storing and retrieving XML data using the Semantic Binary Object-Oriented Database System (Sem-ODB) to leverage the advanced Sem-ODB technology with the emerging XML data model. First, a meta-schema based approach was implemented to address the data model mismatch issue that is inherent in the non-native approaches. The meta-schema based approach captures the meta-data of both Document Type Definitions (DTDs) and Sem-ODB Semantic Schemas, thus enables a dynamic and flexible mapping scheme. Second, a formal framework was presented to ensure precise and concise mappings. In this framework, both schemas and the conversions between them are formally defined and described. Third, after major features of an XML query language, XQuery, were analyzed, a high-level XQuery to Semantic SQL (Sem-SQL) query translation scheme was described. This translation scheme takes advantage of the navigation-oriented query paradigm of the Sem-SQL, thus avoids the excessive join problem of relational approaches. Finally, the modeling capability of the Semantic Binary Object-Oriented Data Model (Sem-ODM) was explored from the perspective of conceptually modeling an XML Schema using a Semantic Schema. ^ It was revealed that the advanced features of the Sem-ODB, such as multi-valued attributes, surrogates, the navigation-oriented query paradigm, among others, are indeed beneficial in coping with the XML storage and retrieval issue using a non-XML approach. Furthermore, extensions to the Sem-ODB to make it work more effectively with XML data were also proposed. ^
Resumo:
Data integration systems offer uniform access to a set of autonomous and heterogeneous data sources. One of the main challenges in data integration is reconciling semantic differences among data sources. Approaches that been used to solve this problem can be categorized as schema-based and attribute-based. Schema-based approaches use schema information to identify the semantic similarity in data; furthermore, they focus on reconciling types before reconciling attributes. In contrast, attribute-based approaches use statistical and structural information of attributes to identify the semantic similarity of data in different sources. This research examines an approach to semantic reconciliation based on integrating properties expressed at different levels of abstraction or granularity using the concept of property precedence. Property precedence reconciles the meaning of attributes by identifying similarities between attributes based on what these attributes represent in the real world. In order to use property precedence for semantic integration, we need to identify the precedence of attributes within and across data sources. The goal of this research is to develop and evaluate a method and algorithms that will identify precedence relations among attributes and build property precedence graph (PPG) that can be used to support integration.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Other
Resumo:
This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.
Resumo:
In this paper we carry out an investigation of some of the major features of exam timetabling problems with a view to developing a similarity measure. This similarity measure will be used within a case-based reasoning (CBR) system to match a new problem with one from a case-based of previously solved problems. The case base will also store the heuristic for meta-heuristic techniques applied most successfully to each problem stored. The technique(s) stored with the matched case will be retrieved and applied to the new case. The CBR assumption in our system is that similar problems can be solved equally well by the same technique.
Resumo:
A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.
Resumo:
In this paper we carry out an investigation of some of the major features of exam timetabling problems with a view to developing a similarity measure. This similarity measure will be used within a case-based reasoning (CBR) system to match a new problem with one from a case-based of previously solved problems. The case base will also store the heuristic for meta-heuristic techniques applied most successfully to each problem stored. The technique(s) stored with the matched case will be retrieved and applied to the new case. The CBR assumption in our system is that similar problems can be solved equally well by the same technique.
Resumo:
A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.
Resumo:
En los últimos tiempos se ha demostrado la importancia del aprendizaje en la Inteligencia humana, tanto en su vertiente de aprendizaje por observación como a través de la experiencia, como medio de identificar situaciones y predecir acciones o respuestas a partir de la información adquirida. Dado este esquema general de la Inteligencia Humana, parece razonable imitar su estructura y características en un intento por diseñar una arquitectura general de inteligencia aplicada a la Robótica. En este trabajo, inspirados por las teorías de Hawkins en su obra On Intelligence, hemos propuesto una arquitectura jerárquica de inteligencia en el que los diversos módulos se implementan a partir de Razonamiento basado en Casos ¿Case Based Reasoning (CBR)¿, una herramienta de IA especialmente apta para la adquisición de conocimiento a través del aprendizaje y para la predicción basada en similitud de información. Dentro de esta arquitectura la presente tesis se centra en las capas inferiores, las de tipo reactivo, expresadas en forma de comportamientos básicos, que implementan conductas sencillas pero indispensables para el funcionamiento de un robot. Estos comportamientos han sido tradicionalmente diseñados de forma algorítmica, con la dificultad que esto entraña en muchos casos por el desconocimiento de sus aspectos intrínsecos. Además, carecen de la capacidad de adaptarse ante nuevas situaciones no previstas y adquirir nuevos conocimientos a través del funcionamiento del robot, algo indispensable si se pretende que éste se desenvuelva en ambientes dinámicos y no estructurados. El trabajo de esta tesis considera la implementación de comportamientos reactivos con capacidad de aprendizaje, como forma de superar los inconvenientes anteriormente mencionados consiguiendo al mismo tiempo una mejor integración en la arquitectura general de Inteligencia considerada, en la cual el aprendizaje ocupa el papel principal. Así, se proponen y analizan diversas alternativas de diseño de comportamientos reactivos, construidos a través de sistemas CBR con capacidad de aprendizaje. En particular se estudia i) la problemática de selección, organización, y representación de la información como recipiente del conocimiento de los comportamientos;ii) los problemas asociados a la escalabilidad de esta información; iii) los aspectos que acompañan al proceso de predicción mediante la recuperación de la respuesta de experiencias previas similares a la presentada; iv) la identificación de la respuesta no solo con la acción a tomar por parte del comportamiento sino con un concepto que represente la situación presentada; y v) la adaptación y evaluación de la respuesta para incorporar nuevas situaciones como nuevo conocimiento del sistema. También se analiza la organización de comportamientos básicos que permite obtener, a través de sus interacciones, comportamientos emergentes de nivel superior aún dentro de un alcance reactivo. Todo ello se prueba con un robot real y con un simulador, en una variante de un escenario de aplicación clásico en Robótica, como es la competición Robocup. La elaboración de esta tesis ha supuesto, además de los aspectos puramente investigadores, un esfuerzo adicional en el desarrollo de las herramientas y metodología de pruebas necesarias para su realización. En este sentido, se ha programado un primer prototipo de marco de implementación de comportamientos reactivos con aprendizaje, basados en CBR, para la plataforma de desarrollo robótico Tekkotsu.
Resumo:
Este artículo presenta los resultados de una investigación realizada al interior de dos contextos. Por un lado, el teórico, en el marco de uno de los discursos más relevantes en los campos de la estrategia organizacional, de la managerial and organizational cognition (MOC) y, en general, de los estudios organizacionales (organization studies): la construcción de sentido (sensemaking). Por el otro, el empírico, en una de las grandes compañías multinacionales del sector automotriz con presencia global. Esta corporación enfrenta una permanente tensión entre lo que dicta la casa matriz, en relación con el cumplimiento de metas y estándares específicos, considerando el mundo entero, y los retos que, teniendo en cuenta lo regional y lo local, experimentan los altos directivos encargados de hacer prosperar la empresa en estos lugares. La aproximación implementada fue cualitativa. Esto en atención a la naturaleza de la problemática abordada y la tradición del campo. Los resultados permiten ampliar el actual nivel de comprensión acerca de los procesos de sensemaking de los altos directivos al enfrentar un entorno estratégico turbulento.
Resumo:
Dyscalculia stands for a brain-based condition that makes it hard to make sense of numbers and mathematical concepts. Some adolescents with dyscalculia cannot grasp basic number concepts. They work hard to learn and memorize basic number facts. They may know what to do in mathematical classes but do not understand why they are doing it. In other words, they miss the logic behind it. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work focuses on the development of an Intelligent System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming framework to Knowledge Representation and Reasoning, complemented with a Case-Based problem solving approach to computing, that allows for the handling of incomplete, unknown, or even contradictory information.
Resumo:
Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.