531 resultados para rhodium phthalocyanine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(methyl methacrylate) and methyl-2-cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline and oligomeric cobalt phthalocyanine are blended in different proportions by chemical methods. These blends are characterised by spectroscopic methods and dielectric measurements. Dielectric studies on the conducting polymer blends are carried out in the frequency range of 100 kHz to 5MHz from room temperature (300 K) to 373 K. Dielectric permittivity and dielectric loss of these blends are explained on the basis of interfacial polarisation. From the dielectric permittivity studies, ac conductivity of the samples were calculated and the results are correlated. In order to understand the exact conduction mechanism of the samples, dc electrical conductivity of the blends is carried out in the temperature range of 70–300 K. By applying Mott’s theory, it is found that the conducting polymer composites obey a 3D variable range hopping mechanism. The values of Mott’s temperature (T0), density of states at the Fermi energy (N(EF)), range of hopping (R) and hopping energy (W) for the composites are calculated and presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrically conductive organic and metalloorganic polymers are of great interest and they have applications in electronic, optical, photonic, photoelectric, electrochemical, and dielectric devices. Tetrameric cobalt phthalocyanine was prepared by conventional chemical method. The dielectric permittivity of the tetrameric cobalt phthalocyanine sample was evaluated from the observed capacitance values in the frequency range 100 KHz to 5 MHz and in the temperature range of 300 to 383°K. It is found that the system obeys the Maxwell Wagner relaxation of space charge phenomenon. Further, from the permittivity studies AC conductivity was evaluated. The values of AC conductivity and DC conductivity were compared. Activation energy was calculated. To understand the conduction mechanism Mott’s variable range hopping model was applied to the system. The T 1/4 behavior of the DC conductivity along with the values of Mott’s Temperature (T0), density of states at the Fermi energy N (EF), and range of hopping R and hopping energy W indicate that the transport of charge carriers are by three-dimensional variable range hopping

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any investigation, information about the molecules under consideration is very essential for tailoring their properties. Evaluation of dispersion parameters, namely optical dielectric constant, static dielectric constant, relaxation time and spreading factor, assumes significance in this context. Dielectric spectroscopy is a useful tool for estimating these parameters. Not only does it reveal details about these constants but it also gives insight into the mechanism of conduction. In this paper the evaluation of dispersion parameters of cobalt phthalocyanine tetramer in the temperature range 300–393K is attempted using Cole–Cole plots. The temperature variation of the spreading factor indicates the existence of multiple equilibrium positions in the case of cobalt phthalocyanine tetramer. To the best of our knowledge, the evaluation of dispersion parameters for cobalt phthalocyanine tetramer is reported for the first time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ordered nano-structured surfaces, like self-assembled monolayers (SAMs) are of a great scientific interest, due to the low cost, simplicity, and versatility of this method. SAMs found numerous of applications in molecular electronics, biochemistry and optical devices. Phthalocyanine (Pc) complexes are of particular interest for the SAM preparation. These molecules exhibit fascinating physical properties and are chemically and thermally stable. Moreover their complex structure is advantageous for the fabrication of switchable surfaces. In this work the adsorption process of Pcs derivatives, namely, subphthalocyanines (SubPcB) and terbium (2TbPc) sandwich complexes on gold has been investigated. The influence of the molecular concentration, chain length of peripheral groups, and temperature on the film formation process has been examined using a number of techniques. The SAMs formation process has been followed in situ and in real time by means of second harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. To investigate the quality of the SAMs prepared at different temperatures atomic force microscopy (AFM) and X-Ray photoelectron spectroscopy (XPS)measurements were performed. Valuable information about SubPcB and 2TbPc adsorbtion process has been obtained in the frame of this work. The kinetic data, obtained with SHG and SPR, shows the best conformance with the first order Langmuir kinetic model. Comparing SHG and SPR results, it has been found, that the film formation occurs faster than the formation of chemical bonds. Such, the maximum amount of molecules on the surface is reached after 6 min for SubPcB and 30 min for 2TbPc. However, at this time the amount of formed chemicals bonds is only 10% and 40% for SubPcB and 2TbPc, respectively. The most intriguing result, among others, was obtained at T = 2 °C, where the formation of the less dense SAMs have been detected with SHG.However, analyzing XPS and AFM data, it has been revealed, that there is the same amount of molecules on the surface at both temperature T = 2 °C, and T = 21 °C, but the amount of formed chemicals bond is different. At T = 2 °C molecules form aggregates, therefore many of available anchor groups stay unattached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [2+2+2] cycloaddition reaction involves the formation of three carbon-carbon bonds in one single step using alkynes, alkenes, nitriles, carbonyls and other unsaturated reagents as reactants. This is one of the most elegant methods for the construction of polycyclic aromatic compounds and heteroaromatic, which have important academic and industrial uses. The thesis is divided into ten chapters including six related publications. The first study based on the Wilkinson’s catalyst, RhCl(PPh3)3, compares the reaction mechanism of the [2+2+2] cycloaddition process of acetylene with the cycloaddition obtained for the model of the complex, RhCl(PH3)3. In an attempt to reduce computational costs in DFT studies, this research project aimed to substitute PPh3 ligands for PH3, despite the electronic and steric effects produced by PPh3 ligands being significantly different to those created by PH3 ones. In this first study, detailed theoretical calculations were performed to determine the reaction mechanism of the two complexes. Despite some differences being detected, it was found that modelling PPh3 by PH3 in the catalyst helps to reduce the computational cost significantly while at the same time providing qualitatively acceptable results. Taking into account the results obtained in this earlier study, the model of the Wilkinson’s catalyst, RhCl(PH3)3, was applied to study different [2+2+2] cycloaddition reactions with unsaturated systems conducted in the laboratory. Our research group found that in the case of totally closed systems, specifically 15- and 25-membered azamacrocycles can afford benzenic compounds, except in the case of 20-membered azamacrocycle (20-MAA) which was inactive with the Wilkinson’s catalyst. In this study, theoretical calculations allowed to determine the origin of the different reactivity of the 20-MAA, where it was found that the activation barrier of the oxidative addition of two alkynes is higher than those obtained for the 15- and 25-membered macrocycles. This barrier was attributed primarily to the interaction energy, which corresponds to the energy that is released when the two deformed reagents interact in the transition state. The main factor that helped to provide an explanation to the different reactivity observed was that the 20-MAA had a more stable and delocalized HOMO orbital in the oxidative addition step. Moreover, we observed that the formation of a strained ten-membered ring during the cycloaddition of 20-MAA presents significant steric hindrance. Furthermore, in Chapter 5, an electrochemical study is presented in collaboration with Prof. Anny Jutand from Paris. This work allowed studying the main steps of the catalytic cycle of the [2+2+2] cycloaddition reaction between diynes with a monoalkyne. First kinetic data were obtained of the [2+2+2] cycloaddition process catalyzed by the Wilkinson’s catalyst, where it was observed that the rate-determining step of the reaction can change depending on the structure of the starting reagents. In the case of the [2+2+2] cycloaddition reaction involving two alkynes and one alkene in the same molecule (enediynes), it is well known that the oxidative coupling may occur between two alkynes giving the corresponding metallacyclopentadiene, or between one alkyne and the alkene affording the metallacyclopentene complex. Wilkinson’s model was used in DFT calculations to analyze the different factors that may influence in the reaction mechanism. Here it was observed that the cyclic enediynes always prefer the oxidative coupling between two alkynes moieties, while the acyclic cases have different preferences depending on the linker and the substituents used in the alkynes. Moreover, the Wilkinson’s model was used to explain the experimental results achieved in Chapter 7 where the [2+2+2] cycloaddition reaction of enediynes is studied varying the position of the double bond in the starting reagent. It was observed that enediynes type yne-ene-yne preferred the standard [2+2+2] cycloaddition reaction, while enediynes type yne-yne-ene suffered β-hydride elimination followed a reductive elimination of Wilkinson’s catalyst giving cyclohexadiene compounds, which are isomers from those that would be obtained through standard [2+2+2] cycloaddition reactions. Finally, the last chapter of this thesis is based on the use of DFT calculations to determine the reaction mechanism when the macrocycles are treated with transition metals that are inactive to the [2+2+2] cycloaddition reaction, but which are thermally active leading to new polycyclic compounds. Thus, a domino process was described combining an ene reaction and a Diels-Alder cycloaddition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of 2-(2'-hydroxyphenylazo)phenol with [Rh(PPh3)(3)Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)(3)Cl] with 2-(2'carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of 1,3-diaryltriazenes (abbreviated in general as HL-R, where R stands for the para-substituent in the aryl fragment and H stands for the dissociable hydrogen atom, R = OCH3, CH3, H, Cl, NO2) with [Rh(PPh3)(2)(CO)Cl] in ethanol in the presence of NEt3 produces a series of tris-diaryltriazenide complexes of rhodium of type [Rh(L-R)(3)], where the triazenes are coordinated to rhodium as monoanionic, bidentate N,N-donors. Structure of the [Rh(L-OCH3)(3)] complex has been determined by X-ray crystallography. The complexes are diamagnetic, and show characteristic H-1 NMR signals and intense MLCT transitions in the visible region. They also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0.84-1.67 V vs SCE), followed by an oxidation of the coordinated tri- and azene ligand (except the R = NO2 complex). An irreversible reduction of the coordinated triazene is also observed for all the complexes below -1.03 V vs SCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the dinuclear complex [{Rh(CO)(2)}(2) (mu-Cl)(2)]with an alpha-diimine ligand, 1,2- bis[(2,6-diisopropylphenyl) imino] acenaphthene (iPr(2)Ph-bian), produces square-planar [RhCl(CO)(iPr(2)Ph-bian)]. For the first time, 2: 1 and 1: 1 alpha-diimine/dimer reactions yielded the same product. The rigidity of iPr(2)Ph-bian together with its flexible electronic properties and steric requirements of the 2,6-diisopropyl substituents on the benzene rings allow rapid closure of a chelate bond and replacement of a CO ligand instead of chloride. A resonance Raman study of [RhCl(CO)(iPr(2)Ph-bian)] has revealed a predominant Rh-to-bian charge transfer (MLCT) character of electronic transitions in the visible spectral region. The stabilisation of [RhCl(CO)(iPr(2)Ph-bian)] in lower oxidation states by the pi-acceptor iPr(2)Ph-bian ligand was investigated in situ by UV-VIS, IR and EPR spectroelectrochemistry at variable temperatures. The construction of the novel UV-VIS-NIR-IR low-temperature OTTLE cell used in these studies is described in the last part of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand 2,2'-[(E)-diazene-1,2-diyldicarbonothioyl]diphenol has been synthesised in situ by aerial oxidation of o-hydroxythiobenzhydrazide [H(htbh)] in presence of rhodium(III) in DMSO. Each ligand binds two RhO2+ ions through its N and S atoms and the O atom of its deprotonated hydroxy group. Each RhO2+ contains two cis-Rh = O bonds. The sixth coordination site of each rhodium(v) is occupied by the O of DMSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the tetrakis(cyclooctene)rhodium(I) complex [{Rh(C8H14-c)2(μ-Cl)}2] with the appropriate divinyldisiloxane molecules (ViSiR2)2O (R=Me or Ph) yields, by displacement of the cycloctene ligands, the complexes [{Rh(ViSiR2)2O(μ-Cl)}2] (R=Me (1) or Ph (2)). These react further with a tertiary phosphine PR3 to give cis-[Rh{(ViSiR2)2O}(PR′3)Cl] (R′=Ph or C6H4Me-p). The complex cis-[{Rh(Vi2SiMe2)(μ-Cl)}2] (7) was similarly prepared by the displacement of ethylene from [{Rh(C2H4)2(μ-Cl)}2] by the divinyldimethylsilane Vi2SiMe2. X-ray molecular structures of the crystalline complexes 1, 2 and 7 show a distorted square planar Rh(I) environment, the CH2CH groups being orthogonal to this plane; 1 and 2 have the Rh–(ViSiR2)2O metallacycle in the chair conformation, but differ in the nature of the central Rh(Cl)RhCl core, which is planar for 1 and puckered for 2, but each of 1 and 2 is the rac-diastereoisomer, whereas 7 has the meso-configuration. In solution 1 and 2 exist as a mixture of isomers, probably the rac- and meso-pairs as established by multinuclear NMR spectral studies. A series of saturation transfer NMR spectroscopic experiments showed that the divinyldisiloxane ligands in [{Rh(ViSiPh2)2O(μ-Cl)}2] underwent a dynamic process involving the dissociation, rotation and then reassociation of the vinyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of the dithioethers (−)-DIOSR2 (R=Me, iPr) (2,3-O-isopropylidene-1,4-dimethyl (and diisopropyl) thioether-L-threitol) to a dichloromethane solution of [Rh(COD)2]ClO4 (COD=1,5-cyclooctadiene) yielded the mononuclear complexes [Rh(COD)(DIOSR2)]ClO4. X-ray diffraction methods showed that the [Rh(COD)(DIOSiPr2)]ClO4 complex had an square-planar coordination geometry at the rhodium atom with the iPr groups in anti position. Cyclooctadiene complexes react with carbon monoxide to form dinuclear tetracarbonylated complexes [(CO)2Rh(μ-DIOSR2)2(CO)2](ClO4)2. [Rh(COD)(DIOSR2)]ClO4 are active catalyst precursors in styrene hydroformylation at 30 atm and 65°C which give conversions of up to 99% with a regioselectivity in 2-phenylpropanal as high as 74%. In all cases enantioselectivities are low.