1000 resultados para resistência à temperatura


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of seedlings of passion fruit is done mainly with the use of seeds by most producers. It can also be propagated by cuttings, layering and in vitro tissue culture. However, even when grafting is used, it is necessary to use seeds to produce the rootstock. Nevertheless, most Passifloracea species have germination problems, making it difficult to obtain seedlings. Although several studies have been developed in an attempt to increase seed germination of passion fruit there are still difficulties in understanding the germination process and also disagreement about seed dormancy. Thus, the present study aimed to review papers related to seed germination of passion fruit emphasizing aspects such as mechanical resistance to water ingress, the need for adequate light and temperature and the use of plant growth regulators in overcoming seed dormancy. It was noticed that, in general, the passion fruit seeds are photoblastic negative and exhibit physiological dormancy, being no need of seed scarification to stimulate its germination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amostras de um aço inoxidável martensítico AISI 410 temperado e revenido foram nitretadas a plasma em baixa temperatura usando o tratamento de nitretação plasma DC e a nitretação a plasma com tela ativa. Ambos os tratamentos foram realizados a 400 °C, utilizando mistura gasosa de 75 % de nitrogênio e 25 % de hidrogênio durante 20 horas e 400 Pa de pressão. As amostras de aço AISI 410 temperado e revenido foram caracterizadas antes e depois dos tratamentos termoquímicos, usando as técnicas de microscopia óptica, microscopia eletrônica de varredura, medidas de microdureza, difração de raios X e medidas de teor de nitrogênio em função da distância à superfície por espectrometria WDSX de raios X. A resistência à erosão por cavitação do aço AISI 410 nitretado DC e com tela ativa foi avaliada segundo a norma ASTM G32 (1998). Os ensaios de erosão, de erosão - corrosão e de esclerometria linear instrumentada segundo norma ASTM C1624 (2005) somente foram realizados no aço AISI 410 nitretado com tela ativa. Ensaios de nanoindentação instrumentada forma utilizados para medir a dureza (H) e o módulo de elasticidade reduzido (E*) e calcular as relações H/E* e H3/E*2 e a recuperação elástica (We), utilizando o método proposto por Oliver e Pharr. Ambos os tratamentos produziram camadas nitretadas de espessura homogênea constituídas por martensita expandida supersaturada em nitrogênio e nitretos de ferro com durezas superiores a 1200 HV, porém, a nitretação DC produziu maior quantidade de nitretos de ferro do que o tratamento de tela ativa. Os resultados de erosão por cavitação do aço nitretado DC mostraram que a precipitação de nitretos de ferro é prejudicial para a resistência à cavitação já que reduziu drasticamente o período de incubação e aumentou a taxa de perda de massa nos estágios iniciais do ensaio; entretanto, depois da remoção desses nitretos de ferro, a camada nitretada formada somente por martensita expandida resistiu bem ao dano por cavitação. Já no caso do aço nitretado com tela ativa, a resistência à erosão por cavitação aumentou 27 vezes quando comparada com o aço AISI 410 sem nitretar, fato atribuído à pequena fração volumétrica e ao menor tamanho dos nitretos de ferro presente na camada nitretada, às maiores relações H/E* e H3/E*2 e à alta recuperação elástica da martensita expandida. A remoção de massa ocorreu, principalmente, pela formação de crateras e de destacamento de material da superfície dos grãos por fratura frágil sem evidente deformação plástica. As perdas de massa acumulada mostradas pelo aço nitretado foram menores do que aquelas do aço AISI 410 nos ensaios de erosão e de erosão corrosão. O aço nitretado apresentou uma diminuição nas taxas de desgaste em ambos os ensaios de aproximadamente 50 % quando comparadas com o aço AISI 410. O mecanismo de remoção de material foi predominantemente dúctil, mesmo com o grande aumento na dureza. Os resultados de esclerometria linear instrumentada mostraram que a formação de martensita expandida possibilitou uma diminuição considerável do coeficiente de atrito em relação ao observado no caso do aço AISI 410 sem nitretar. O valor de carga crítica de falha foi de 14 N. O mecanismo de falha operante no aço nitretado foi trincamento por tensão.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sustentabilidade é uma preocupação para a indústria da construção civil, uma vez que é responsável pelo consumo de uma grande quantidade de recursos naturais e por impactos ambientais. Assim, a utilização de agregados reciclados em substituição dos agregados naturais mostra-se benéfica ao minimizar os impactos ambientais, o consumo de recursos naturais e na redução de alguns problemas urbanos associados à acumulação de lixo. Neste contexto, o trabalho de investigação desenvolvido teve como objetivo o estudo da utilização de agregados reciclados de borracha de pneu na composição do concreto, contribuindo com uma alternativa sustentável para o problema do depósito de pneus após a sua vida útil. O trabalho laboratorial realizado compreendeu ensaios de resistência à compressão do concreto. Estudaram-se três composições de concreto, uma composição de referência, uma composição com uma taxa de substituição de 15% e outra com taxa de substituição de 30% de agregados naturais por agregados reciclados de borracha de pneu usados. Os diferentes provetes de concreto foram submetidos a vários níveis de carregamento (0,15fcd; 0,3fcd e 0,7fcd) e a diferentes níveis de temperatura (20, 300, 500 e 700ºC). Os resultados obtidos permitiram verificar que o aumento da percentagem de agregados de borracha reciclados de pneu inserido no concreto conduz a um aumento do controlo de fendilhação e minimiza o surgimento de fissuração de origem térmica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improved performance of hydraulic binders, the base of Portland cement, consists in the careful selection and application of materials that promote greater durability and reduced maintenance costs There is a wide variety of chemical additives used in Portland cement slurries for cementing oil wells. These are designed to work in temperatures below 0 ° C (frozen areas of land) to 300 ° C (thermal recovery wells and geothermal); pressure ranges near ambient pressure (in shallow wells) to greater than 200 MPa (in deep wells). Thus, additives make possible the adaptation of the cement slurries for application under various conditions. Among the materials used in Portland cement slurry, for oil wells, the materials with nanometer scale have been applied with good results. The nanossílica, formed by a dispersion of SiO2 particles, in the nanometer scale, when used in cement systems improves the plastic characteristics and mechanical properties of the hardened material. This dispersion is used commercially as filler material, modifier of rheological properties and / or in recovery processes construction. It is also used in many product formulations such as paints, plastics, synthetic rubbers, adhesives, sealants and insulating materials Based on the above, this study aims to evaluate the performance of nanossílica as extender additive and improver of the performance of cement slurries subjected to low temperatures (5 ° C ± 3 ° C) for application to early stages of marine oil wells. Cement slurries were formulated, with densities 11.0;12.0 and 13.0 ppg, and concentrations of 0; 0.5, 1.0 and 1.5%. The cement slurries were subjected to cold temperatures (5 ° C ± 3 ° C), and its evaluation performed by tests rheological stability, free water and compressive strength in accordance with the procedures set by API SPEC 10A. Thermal characterization tests (TG / DTA) and crystallographic (XRD) were also performed. The use of nanossílica promoted reduction of 30% of the volume of free water and increased compression resistance value of 54.2% with respect to the default cement slurry. Therefore, nanossílica presented as a promising material for use in cement slurries used in the early stages of low-temperature oil wells

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As time passed, humanity needed the development of new materials used in various activities. High strength materials such as titanium and Inconel for example, had been studied because they are widely used for implants in biomedicine, as well as their use in aerospace and automotive industries. Because of its thermal and mechanical properties, these materials are considered difficult to machine, promoting a rapid wear of cutting tools, primarily caused by the high temperatures in machining. With the development of new materials has emerged the need of developing new manufacturing processes. One of today’s innovative processes is the micro-manufacturing. Being a process with a defined cutting tool geometry, burr formation is a constant and undesirable phenomenon formed during the machininig process. Being detrimental to the manufacturing process, overspending deburring operations are constantly employed leading to increase the aggregate cost to the manufactured material. Assembly components are also impaired if there is no control of the burr, with consequences including the disposal of components due to the occurence of this phenomenon. This paper presents the study of micro-milling Inconel 718, investigating influential parameters in the formation of burrs in order to minimize the occurrence of this phenome non. Different feed rates per tooth and cutting speed are evaluated, and different cutting fluids with different methods of applying the fluid. Adding graphene to cutting fluids was considered as a variable to be investigated, which is considered an excellent solid lubricant, in addition to increasing the thermal conductivity of the cooling solution (AZIMI; MOZAF FARI, 2015). The micro-milling temperature was evaluated in the present work. It was observed a new phenomenon that causes the machined surface temperature decreases below room temperature when using the solution water + oil. This phenomenon is explained in further chapters. In order to unravel this phenomenon, a new test was proposed and, from this test, it can be concluded, comparatively, which cutting fluid has a better cooling property.Using cutting fluid with different thermal properties has shown influence when analy zing burr formation and reducing machining temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of resistance is defined as the activation of a state of resistance against diseases which is induced systemically in plants by the use of biotic or abiotic agents without any modification of the plant genome, occurring non-specific way, by activating genes coding for various plant defense responses. Chitosan is a polymer derived from the deacetylation of chitin, which is found in large quantities in crustacean shell, and studied with the potential to control plant pathogens, both by its direct fungistatic action, as the ability to induce protection of plants, indicating the presence of molecules of elicitoras characteristics. Three experiments with objective of evaluating the potential of chitosan in the seedling resistance induction were developed, beet (Beta vulgaris) seeds, cucumber (Cucumis sativus) seeds and tomato (Solanum lycopersicum) seeds, and the control of Fusarium sp., Rhizoctonia solani K¨uhn e Pythium sp. in vitro conditions. The experimental design was completely randomized, with four replications. Beet seeds, tomato and cucumber were submerged in chitosan solution for 20 minutes, in concentrations of 0.25, 0.5, 1 and 2% in the control and distilled water. Seeds were sown in trays containing Plantmax Florestalr substrate sterilized and inoculated with Fusarium sp., Rhizoctonia solani K¨unh and Pythium sp., respectively for the three cultures. The experiment was conducted for 14 days in growth chamber with controlled temperature (25 C 2 C), light (12 hour photoperiod) and humidity (70% 10%). The evaluations were seed emergency, seedling damping-off, seedling length, fresh weight and activity of the enzymes phenylalanine amˆonia-liase (PAL), chitinase and b-1,3-glucanase. It was also rated the mycelial growth of Fusarium sp., Pythium sp. and R. solani on P.D.A. (Potato-Dextrose and Agar) culture medium containing chitosan at the same concentrations evaluated in seeds. For beet growing, seed treatment with chitosan presented higher emergence and the length of the seedlings, and reduced the percentage of tipping. Treatment with chitosan activated the systemic acquired resistance with expression of chitinase and b-1,3-glucanase enzymes. For the tomato crop in chitosan concentration of 0.25% favored the emergency of seedlings, reduced the incidence of tipping and activated the PAL enzymes, chitinase and b-1,3-glucanase. In cucumber on the concentration of up 0.5% favored seedlings emergence and reduces the incidence of tipping. Chitosan activated the PAL enzymes and b-1,3-glucanase. Chitosan also presented fungistatic action on the initial growth of Pythium sp. and R. solani in vitro conditions, however, such action did not prevail until the end of the experiment. To Fusarium sp. the concentration of chitosan resulted in the reduction of mycelial growth in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The supersulfated cement (CSS) basically consist of up to 90% blast furnace slag, 10-20% of a source of calcium sulfate and a small amount of alkali activator, covered by European standard EN 15743/2010. Because of this SSC are considered "green cement" low environmental impact. The source of calcium sulfate used in the preparation of CSS can be obtained from natural sources, such as gypsum or from alternative sources (industrial products), such as phosphogypsum. The phosphogypsum is a by-product of the fertilizer industry, used in the production of phosphoric acid. In this process the phosphate rock is treated with sulfuric acid to give as the major product phosphoric acid (H3PO4), gypsum and a small amount of hydrofluoric acid. The chemical composition of gypsum is basically calcium sulfate dihydrate (CaSO4.2H2O), similar to gypsum, because it can be used in this type of cement. To become anhydrous, the calcination of gypsum is necessary. The availability of the source of calcium sulfate to react with the slag is dependent on its solubility that is directly related to its calcination temperature. The solubility of the anhydrous gypsum decreases with increasing calcination temperature. This study investigated the influence of temperature of calcination of phosphogypsum on the performance of CSS. Samples were prepared with 10 and 20% of phosphogypsum calcinated at 350 to 650 ° C using KOH as an alkaline activator at three different concentrations (0.2, 0.5 and 0.8%). The results showed that all mortars presented the minimum values required by EN 15743/2010 for 7 and 28 days of hydration. In general CSS containing 10% phosphogypsum showed slightly better compressive strength results using a lower calcination temperature (350 °C) and curing all ages. The CSS containing 20% of calcined gypsum at 650 °C exhibit satisfactory compressive strenght at 28 days of hydration, but at later ages (56 to 90 days) it strongly reduced. This indicates that the calcination temperature of phosphogypsum has a strong influence on the performance of the CSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buscando-se estabelecer a dinâmica populacional da mosca-dos-chifres foi realizado o acompanhamento de dois rebanhos bovinos estabelecidos em regiões climáticas contrastantes, o que possibilitou identificar que além da temperatura e da precipitação, o número de dias de chuva apresenta influência direta na infestação sobre os animais e que sob as condições climáticas do trópico úmido, a mosca-dos-chifres tem a capacidade de produzir até cerca de 15 gerações anuais. Tais informações, associadas a realização de testes diagnósticos da resistência a pesticidas, tornam-se relevantes na elaboração de estratégias de controle para as populações da mosca-dos-chifres, uma vez que a capacidade anual da espécie em gerar descendentes no Brasil mostra-se favorável à rápida seleção de indivíduos resistentes as bases utilizadas em seu controle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels