973 resultados para realistic neural modeling
Resumo:
As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.
Resumo:
Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução.
Resumo:
Em geral, estruturas espaciais e manipuladores robóticos leves têm uma característica similar e inerente que é a flexibilidade. Esta característica torna a dinâmica do sistema muito mais complexa e com maiores dificuldades para a análise de estabilidade e controle. Então, braços robóticos bastantes leves, com velocidade elevada e potencia limitada devem considerar o controle de vibração causada pela flexibilidade. Por este motivo, uma estratégia de controle é desejada não somente para o controle do modo rígido mas também que seja capaz de controlar os modos de vibração do braço robótico flexível. Também, redes neurais artificiais (RNA) são identificadas como uma subespecialidade de inteligência artificial. Constituem atualmente uma teoria para o estudo de fenômenos complexos e representam uma nova ferramenta na tecnologia de processamento de informação, por possuírem características como processamento paralelo, capacidade de aprendizagem, mapeamento não-linear e capacidade de generalização. Assim, neste estudo utilizam-se RNA na identificação e controle do braço robótico com elos flexíveis. Esta tese apresenta a modelagem dinâmica de braços robóticos com elos flexíveis, 1D no plano horizontal e 2D no plano vertical com ação da gravidade, respectivamente. Modelos dinâmicos reduzidos são obtidos pelo formalismo de Newton-Euler, e utiliza-se o método dos elementos finitos (MEF) na discretização dos deslocamentos elásticos baseado na teoria elementar da viga. Além disso, duas estratégias de controle têm sido desenvolvidas com a finalidade de eliminar as vibrações devido à flexibilidade do braço robótico com elos flexíveis. Primeiro, utilizase um controlador neural feedforward (NFF) na obtenção da dinâmica inversa do braço robótico flexível e o calculo do torque da junta. E segundo, para obter precisão no posicionamento... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler’s (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).
Resumo:
The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.
Resumo:
Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.