972 resultados para programming model
Resumo:
O aumento da concentração de gases de efeito estufa na atmosfera levou a uma preocupação de como se reduzir as emissões destes gases. Desta preocupação surgiram instrumentos de regulação a fim de reduzir ou controlar os níveis de poluição. Dentro deste contexto, esta pesquisa analisou o setor de transportes de cargas, com ênfase no transporte de soja. No Brasil, o setor de transportes é um dos principais responsáveis pelas emissões de gases de efeito estufa provenientes da queima de combustíveis fósseis. No setor de transportes, as emissões diferem entre os modais, sendo que as ferrovias e hidrovias poluem menos que as rodovias. Desta forma, simulou-se por meio de um modelo de programação linear se a adoção de medidas regulatórias sobre as emissões de CO2 traria uma alteração no uso das ferrovias e hidrovias. Uma das constatações, ao se utilizar o modelo de Minimização de Fluxo de Custo Mínimo para o transporte de soja em 2013, foi que a capacidade de embarque nos terminais ferroviários e hidroviários desempenha um papel fundamental na redução das emissões de CO2. Se não houver capacidade suficiente, a adoção de uma taxa pode não provocar a redução das emissões. No caso do sistema de compra e crédito de carbono, seria necessária a compra de créditos de carbono, numa situação em que a capacidade de embarque nos terminais intermodais seja limitada. Verificou-se, ainda, que melhorias na infraestrutura podem desempenhar um papel mitigador das emissões. Um aumento da capacidade dos terminais ferroviários e hidroviários existentes, bem como o aumento da capacidade dos portos, pode provocar a redução das emissões de CO2. Se os projetos de expansão das ferrovias e hidrovias desenvolvidos por órgãos governamentais saírem do papel, pode-se chegar a uma redução de pouco mais de 50% das emissões de CO2. Consideraram-se ainda quais seriam os efeitos do aumento do uso de biodiesel como combustível e percebeu-se que seria possível obter reduções tanto das emissões quanto do custo de transporte. Efeitos semelhantes foram encontrados quando se simulou um aumento da eficiência energética. Por fim, percebeu-se nesta pesquisa que a adoção de uma taxa não traria tantos benefícios, econômicos e ambientais, quanto a melhoria da infraestrutura logística do país.
Resumo:
This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.
Resumo:
Concern about the growth in adolescent problem behaviours (e.g. delinquency, drug use) has led to increased interest in positive youth development, and a surge in funding for ‘after school programs.’ We evaluate the potential of youth sport programs to foster positive development, while decreasing the risk of problem behaviours. Literature on the positive and negative outcomes of youth sport is presented. We propose that youth sport programs actively work to assure positive outcomes through developmentally appropriate designs and supportive child–adult (parent/coach) relationships. We also highlight the importance of sport programs built on developmental assets (Benson, 1997 ) and appropriate setting features (National Research Council and Institute of Medicine, 2002 ) in bringing about the five ‘C’s of positive development (competence, confidence, character, connections, and compassion/caring: Lerner et al., 2000 ). An applied sport-programming model, which highlights the important roles of policy-makers, sport organizations, coaches and parents in fostering positive youth development is presented as a starting point for further applied and theoretical research.
Resumo:
Among the different production factors, land is the one that most often limits farm development and one of the most studied. The connection between policy and other context variables and land markets is at the core of the policy debate, including the present reform of the Common Agricultural Policy. The proposal of the latter has been published in October 2011 and in Italy it will include the switch of the payment regime from an historical to a regional basis. The authors’ objective is to simulate the impact of the proposed policy reform on the land market, particularly on land values and propensity to transaction. They combine insights and data from a farm household investment model revised and extended in order to simulate the demand curve for land in different policy scenarios and a survey of farmers stated intention carried out in the province of Bologna (Italy) in 2012. Based on these results, the authors calibrate a mathematical programming model of land market exchanges for the province of Bologna and use this model form simulation. The results of the model largely corroborate the results from the survey and both hint at a relevant reaction of the land demand and supply to the shift from the historical to the regionalised payments. As effect, the regionalisation would result in increased rental prices and in a tendency to the re-allocation of land.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper describes a logic of progress for concurrent programs. The logic is based on that of UNITY, molded to fit a sequential programming model. Integration of the two is achieved by using auxiliary variables in a systematic way that incorporates program counters into the program text. The rules for progress in UNITY are then modified to suit this new system. This modification is however subtle enough to allow the theory of Owicki and Gries to be used without change.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
The generalised transportation problem (GTP) is an extension of the linear Hitchcock transportation problem. However, it does not have the unimodularity property, which means the linear programming solution (like the simplex method) cannot guarantee to be integer. This is a major difference between the GTP and the Hitchcock transportation problem. Although some special algorithms, such as the generalised stepping-stone method, have been developed, but they are based on the linear programming model and the integer solution requirement of the GTP is relaxed. This paper proposes a genetic algorithm (GA) to solve the GTP and a numerical example is presented to show the algorithm and its efficiency.
Resumo:
The civil engineering industry generally regards new methods and technology with a high amount of scepticism, preferring to use traditional and trusted methods. During the 1980s competition for civil engineering consultancy work in the world has become fierce. Halcrow recognised the need to maintain and improve their competitive edge over other consultants. The use of new technology in the form of microcomputers was seen to be one method to maintain and improve their repuation in the world. This thesis examines the role of microcomputers in civil engineering consultancy with particular reference to overseas projects. The involvement of civil engineers with computers, both past and present, has been investigated and a survey of the use of microcomputers by consultancies was carried out, the results are presented and analysed. A resume of the state-of-the-art of microcomputer technology was made. Various case studies were carried out in order to examine the feasibility of using microcomputers on overseas projects. One case study involved the examination of two projects in Bangladesh and is used to illustrate the requirements and problems encountered in such situations. Two programming applications were undertaken, a dynamic programming model of a single site reservoir and the simulation of the Bangladesh gas grid system. A cost-benefit analysis of a water resources project using microcomputers in the Aguan Valley, Honduras was carried out. Although the initial cost of microcomputers is often small, the overall costs can prove to be very high and are likely to exceed the costs of traditional computer methods. A planned approach for the use of microcomputers is essential in order to reap the expected benefits and recommendations for the implementation of such an approach are presented.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.
Resumo:
Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR.
Resumo:
A CV aR kockázati mérték egyre nagyobb jelentőségre tesz szert portfóliók kockázatának megítélésekor. A portfolió egészére a CVaR kockázati mérték minimalizálását meg lehet fogalmazni kétlépcsős sztochasztikus feladatként. Az SRA algoritmus egy mostanában kifejlesztett megoldó algoritmus sztochasztikus programozási feladatok optimalizálására. Ebben a cikkben az SRA algoritmussal oldottam meg CV aR kockázati mérték minimalizálást. ___________ The risk measure CVaR is becoming more and more popular in recent years. In this paper we use CVaR for portfolio optimization. We formulate the problem as a two-stage stochastic programming model. We apply the SRA algorithm, which is a recently developed heuristic algorithm, to minimizing CVaR.