865 resultados para pre-clinical animal models
Resumo:
Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q(10) (CoQ(10)) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ(10) to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ(10) has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ(10) before exposing patients to unnecessary health risks at significant costs.
Resumo:
Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims: To discuss the importance of studying animal models to test hypotheses about the mechanisms of urinary continence and pathophysiology of diabetes and urinary incontinence. Source of Data: A literature review was conducted in PubMed and SciELO. The key words used were diabetes, urinary incontinence, urethra, human and rats. Summary of Findings: There is a strong relation between the genesis of urinary incontinence and diabetes mellitus. Due to the similarity of normal distribution of skeletal muscle and urethra anatomy between humans and rats, these animal models have been used in current research about these disorders. Conclusions: The use of rats as an animal model is suitable for experimental studies that test hypotheses about the mechanisms of continence and pathophysiology of the binomial diabetes mellitus and urinary incontinence, thus enabling solutions of great value in clinical practice.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A Doença de Parkinson (DP) é uma das doenças neurodegenerativas mais comuns relacionadas com a idade, e apresenta sintomatologia com alterações motoras clássicas que estão relacionadas com a degeneração dos neurônios dopaminérgicos da SNpc e a diminuição de dopamina no estriado. Modelos animais da DP são instrumentos importantes utilizados por pesquisadores para uma maior compreensão de mecanismos patológicos envolvidos na doença e para a avaliação de possíveis intervenções terapêuticas. Tais modelos devem mimetizar algum aspecto da doença, como a degeneração dos neurônios dopaminérgicos nigrais. Neste contexto, o modelo da DP induzido pela injeção da neurotoxina 6- hidroxidopamina (6-OHDA) já se encontra bem estabelecido em ratos, mas necessita ainda de melhor caracterização das alterações comportamentais e lesões no sistema nigro-estriatal em camundongos de diferentes linhagens a fim de que haja interpretações confiáveis quando o modelo for usado em testes terapêuticos. O presente estudo teve como objetivo melhorar a caracterização do modelo unilateral da DP com 6-OHDA em camundongos suíços, avaliando alterações comportamentais e o efeito sobre os neurônios dopaminérgicos da SNpc. Nesta investigação utilizou-se uma única injeção intraestriatal unilateral de 6-OHDA, em duas diferentes concentrações da toxina: 5µg/µl e 10µg/µl. Os nossos resultados mostraram que ambas as concentrações utilizadas causaram perda severa de neurônios dopaminérgicos na SNpc, com uma média de 74,5% e 89,5% de per da, respectivamente. Esta perda apresentou uma correlação alta com o comportamento rotatório induzido por apomorfina e uma correlação baixa com a ambulação no teste do campo aberto. Desta forma, injeções intraestriatais de 5µg/µl ou 10µg/µl de 6-OHDA, em camundongos suíços, reproduzem de forma efetiva o modelo animal unilateral da DP com 6-OHDA, podendo ser utilizadas de forma confiável em experimentos que visem a investigação de terapias farmacológicas, celulares e/ou de neuroproteção para a DP.
Resumo:
Toadfish are fish from the family Batrachoididae that are found in marine and brackish environment around the world. Among the toadfish, Porichthys genus is very common, where Porichthys porosissimus, also called Atlantic Midshipman is found in Southwest Atlantic, from Rio de Janeiro, Brazil to eastern Argentina. There was no consensus about the classification of the genus Porichthys as venomous fish because so far there are no published Studies regarding human envenomations and/or toxic activities induced in animal models. Herein, we report two conclusive envenoming in human beings caused by P porosissimus spines, with clear signs and symptoms that were very important for the development of our experimental studies. We demonstrated that the P. porosissimus spine extract, now venom, can induce nociceptive and edematogenic responses in mice as well an induction of an inflammatory response elicited by intravital microscopy and leukocyte migration. Finally, we identified in the P. porosissimus spine extract, through analysis by mass spectrometry, the presence of proteins previously detected in the venoms of other fish species and other venomous animals. We believe that based on our studies we will dismiss the non-venomous nature of this fish and clarify this issue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
Resumo:
The beneficial effects derived from the nutritional support in human patients and experimental animal models include the improvement of immune function, repair of wounds, answer to the treatment, time of recovery and survival. In front of these benefits, we end up alienating the nutritional needs of hospitalized patients, especially those with clinical or surgical affections threatening. The objective of the nutritional support is to indicate the importancea and the proportions of energy and nutrients that the patient can use with the maximum effectiveness. The majority of hospitalized patients do not have voluntary food intake adequate to meet even the minimal nutritional needs. It is often perceived that lack of adequate food intake, will have serious impact on the patient’s clinical outcome. The nutritional assessment will help determine which route of feeding will be the safest, most effective and best tolerated by the patient. Diet choice is based on which of the patient’s problems can and should be addressed with nutrition and the feeding access available
Resumo:
The fact that there is a complex and bidirectional communication between the immune and nervous systems has been well demonstrated. Lipopolysaccharide (LPS), a component of gram-negative bacteria, is widely used to systematically stimulate the immune system and generate profound physiological and behavioural changes, also known as sickness behaviour (e.g. anhedonia, lethargy, loss of appetite, anxiety, sleepiness). Different ethological tools have been used to analyse the behavioural modifications induced by LPS; however, many researchers analysed only individual tests, a single LPS dose or a unique ethological parameter, thus leading to disagreements regarding the data. In the present study, we investigated the effects of different doses of LPS (10, 50, 200 and 500 mu g/kg, i.p.) in young male Wistar rats (weighing 180200 g; 89 weeks old) on the ethological and spatiotemporal parameters of the elevated plus maze, light-dark box, elevated T maze, open-field tests and emission of ultrasound vocalizations. There was a dose-dependent increase in anxiety-like behaviours caused by LPS, forming an inverted U curve peaked at LPS 200 mu g/kg dose. However, these anxiety-like behaviours were detected only by complementary ethological analysis (stretching, grooming, immobility responses and alarm calls), and these reactions seem to be a very sensitive tool in assessing the first signs of sickness behaviour. In summary, the present work clearly showed that there are resting and alertness reactions induced by opposite neuroimmune mechanisms (neuroimmune bias) that could lead to anxiety behaviours, suggesting that misunderstanding data could occur when only few ethological variables or single doses of LPS are analysed. Finally, it is hypothesized that this bias is an evolutionary tool that increases animals security while the body recovers from a systemic infection.
Resumo:
Introduction: Small animal models are widely used in basic research. However, experimental systems requiring extracorporeal circuits are frequently confronted with limitations related to equipment size. This is particularly true for oxygenators in systems with limited volumes. Thus we aimed to develop and validate an ultra mini-oxygenator for low-volume, buffer-perfused systems. Methods: We have manufactured a series of ultra mini-oxygenators with approximately 175 aligned, microporous, polypropylene hollow fibers contained inside a shell, which is sealed at each of the two extremities to isolate perfusate and gas compartments. With this construction, gas passes through hollow fibers, while perfusate circulates around fibers. Performance of ultra mini-oxygenators (oxygen partial pressure (PO2 ), gas and perfusate flow, perfusate pressure and temperature drop) were assessed with modified Krebs-Henseleit buffer in an in vitro perfusion circuit and an ex vivo rat heart preparation. Results: Mean priming volume of ultra mini-oxygenators was 1.2±0.5 mL and, on average, 86±6% of fibers were open (n=17). In vitro, effective oxygenation (PO2=400-500 mmHg) was achieved for all flow rates up to 50 mL/min and remained stable for at least 2 hours (n=5). Oxygenation was also effective and stable (PO2=456±40 mmHg) in the isolated heart preparation for at least 60 minutes ("venous" PO2=151±11 mmHg; n=5). Conclusions: We have established a reproducible procedure for fabrication of ultra mini-oxygenators, which provide reliable and stable oxygenation for at least 60-120 min. These oxygenators are especially attractive for pre-clinical protocols using small, rather than large, animals.
Resumo:
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.