938 resultados para poly-L-glutamic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate degradation behavior and the feasibility of biodegradable polymeric stents in common bile duct (CBD) repair and reconstruction. Various molar ratios of lactide (LA) and glycolide (GA) in poly(L-lactide-co-glycolide) (PLGA) were synthesized and processed into a circular tubing of similar to 10.0 mm outer diameter and a wall thickness of about 2.0 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer film of laccase, poly-L-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV-vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)(n) multilayer modified electrode catalyzed four-electron reduction of O-2 to water, without any mediator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization Of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation Of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg.g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RecA of Escherichia coli and its active nucleoprotein filaments with DNA are important for the genomic integrity and the genetic diversity. The formation of the DNA-RecA nucleoprotein filaments is a complex multiple-step process and can be affected by many factors. In this work, the effects of poly-L-lysine (PLL) on the DNA-RecA nucleoprotein filaments are investigated in vitro by agarose gel electrophoresis and atomic force microscopy (AFM). The observed morphologies vary with the concentration, the length, and the addition order of PLL. These distinctions provide information for the conformation change of DNA and the binding sites of RecA protein in the formation process of nucleoprotein filaments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of morphologies of isothermally crystallized thin films with different thicknesses of poly(L-lactide-bethylene oxide) diblock copolymer was observed by optical microscopy (OM) and atomic force microscopy (AFM). Dendritic superstructures stacked with lamellae were investigated in thin films with similar to 200 nm to similar to 400 nm thickness. The lamellar structure was a lozenge- or truncated-lozenge-shaped single crystal of PLLA confirmed by AFM observations. The contour of the dendritic superstructures is hexagonal, and two types of sectors, [110] and [100], can be classified in terms of the chain-folding and crystal growth directions. These phenomena Are due to the interplay of the crystallization of the PLLA block, the microphase separation of the block copolymer, and the effect of the film thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene sheets functionalized covalently with biocompatible poly-L-lysine (PLL) were first synthesized in all alkaline solution. PLL-functionalized graphene is water-soluble and biocompatible, which makes it a novel material promising for biological applications. Graphene sheets played an important role as connectors to assemble these active amino groups Of Poly-L-lysine, which provided a very biocompatible. environment for further functionalization, such as attaching bioactive molecules. As an example, an amplified biosensor toward H2O2 based on linking peroxidase onto PLL-functionalized graphene was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

novel biodegradable Y-shaped copolymer, poly(L-lactide)(2)-b-poly(gamma-benzyl-L-glutamic acid) (PLLA(2)-b-PBLG), was synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with centrally amino-functionalized poly(L-lactide), PLLA(2)-NH2, as a macroinitiator in a convenient way. The Y-shaped copolymer and its precursors were characterized by H-1 NMR, FT-IR, GPC, WAXD and DSC measurements. The self-assembly of the PLLA(2)-b-PBLG copolymer in toluene and benzyl alcohol was examined. It was found that the self-assembly of the copolymer was dependent on solvent and on relative length of the PBLG block. For a copolymer with PLLA blocks of 26 in total degree of polymerization (DP), if the PBLG block was long enough (e.g., DP = 54 or more), the copolymer/toluene solution became a transparent gel at room temperature. In benzyl alcohol Solution, only PLLA(2)-b-PBLG containing ca. 190 BLG residues could form a gel: those with shorter PBLG blocks (e.g., DP = 54) became nano-scale fibrous aggregates and these aggregates were dispersed in benzyl alcohol homogeneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding a Suitable plasticizer for polylactide (PLA) is necessary to overcome its brittleness and enlarge its range of applications. In this study, commercial PLA was melt-blended with a new plasticizer, an ethylene glycol/propylene glycol random copolymer [poly(ethylene glycol-co-propylene glycol) (PEPG)] with a typical number-average molecular weight of 1.2 kDa and an ethylene glycol content of 78.7 mol %. The thermal properties, crystallization behavior, and mechanical properties of the quenched blends and the properties of the blends after storage for 2 months under the ambient conditions were investigated in detail. The advantage of using PEPG is that it does not crystallize at room temperature and has good compatibility with PLA. The quenched PLA/PEPG blends were homogeneous and amorphous systems. With an increase in the PEPG content (5-20%), the glass-transition temperature, tensile strength, and modulus of the blends decreased, whereas the elongation at break and crystallizability increased dramatically. The cold crystallization of PLA resulted in phase separation of the PLA/PEPG blends by annealing of the blends at the crystallization temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.