205 resultados para photocatalyst
Resumo:
Ultrasound has long been recognized as a means of effecting change at the cellular and tissue levels [1-3], which may be enhanced in the presence of photosensitive agents [4-6]. During insonation, the presence of bubbles can also play a role, creating strong microstreaming effects in solution and in more dramatic circumstances leading to the formation of energetic microjets [7], plasmas [8], and the production of other highly reactive species [9]. Such sonodynamic activity has generated particular excitement in the medical community as it Moreover the dual role for microbubbles as both an adjunct to therapy and a diagnostic echogenicity enhancer has seen industry take a proactive role in their development. In the present paper we studied the role of ultrasound driven sonoluminescent light on the degradation of a fluorescent test species (rhodamine) in the presence of an archetypal photocatalyst material, TiO 2, with a view to exploring its exploitation potential for downstream medical applications. We found that, whilst the efficiency of this process is seen to be low compared with conventional ultra-violet sources, we advocate the further exploration of the sonoluminescent approach given its potential for non-invasive applications. A strategy for enhancing the effect is also suggested.
Resumo:
The effects of high power pulsed laser light on a TiO2 photocatalyst have been investigated using a surface second harmonic generation (SSHG) sensor. When TiO2 is irradiated with a laser at 355mm a visible change in colour from white to dark blue crystals was observed. X-ray diffraction studies indicate that the crystal structure of the TiO2 developed a more rutile form following laser exposure.
Resumo:
Solar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis. Here we report that the unidirectional suppression of hydrogen oxidation in photocatalytic water splitting can be fulfilled by controlling the valence state of platinum; this platinum-based cocatalyst in a higher oxidation state can act as an efficient hydrogen evolution site while suppressing the undesirable hydrogen back-oxidation. The findings in this work may pave the way for developing other high-efficientcy platinum-based catalysts for photocatalysis, photoelectrochemistry, fuel cells and water-gas shift reactions.
Resumo:
Semiconductor-sensitised photocatalysis is a well-established and growing area of research, innovation and commercialisation; the latter being mostly limited to the use of TiO2 as the semiconductor. Most of the work on semiconductor photocatalytic systems uses oxygen as the electron acceptor and explores a wide range of electron donors; such systems can be considered to be examples of oxidative photocatalysis, OP. OP underpins most current examples of commercial self-cleaning materials, such as: glass, tiles, concrete, paint and fabrics. OP, and its myriad of applications, have been reviewed extensively over the years both in this journal and elsewhere. However, the ability of TiO2, and other semiconductor sensitisers, to promote reductive photocatalysis, RP, especially of dyes, is significant and, although less well-known, is of growing importance. In such systems, the source of the electrons is some easily oxidised species, such as glycerol. One recent, significant example of a RP process is with respect to photocatalyst activity indicator inks. paiis, which provide a measure of the activity of a photocatalytic film under test via the rate of change of colour of the dye in the ink coating due to irreversible RP. In contrast, by incorporating the semiconductor sensitiser in the ink, rather than outside it, it is possible to create an effective UV dosimeter, based on RP, which can be used as a sun-burn warning indicator. In the above examples the dye is reduced irreversibly, but when the photocatalyst in an ink is used to reversibly photoreduce a dye, a novel, colourimetric oxygen-sensitive indicator ink can be created, which has commercial potential in the food packaging industry. Finally, if no dye is present in the ink, and the semiconductor photocatalyst-loaded ink film coats an easily reduced substrate, such as a metal oxide film, then it can be used to reduce the latter and so, for example, clean up tarnished steel. The above are examples of smart inks, i.e. inks that are active and provide either dynamic information (such as UV dose or O2 level) or a useful function (such as tarnish removal), and all work via a RP process and are reviewed here
Resumo:
The photocatalytic properties of self-cleaning acrylic paint containing TiO2 and ZnO were studied using Acid Orange 7 as a model compound. Paints were exposed to simulated weathering tests in a QUV panel. The initial photoactivity of the unweathered paints with ZnO was significantly higher. In the case of paints containing P25 the photocatalytic activity increases with weathering time, due to increasing destruction of the polymer resin and consequent exposure of the photocatalyst pigment to the Acid Orange 7 test solution. In contrast, in the case of paints containing ZnO, a decrease in photocatalytic activity is observed after weathering, due to the loss and/or photocorrosion of ZnO particles during the weathering process.
Resumo:
Three photocatalyst inks based on the redox dyes, Resazurin (Rz), Basic Blue 66 (BB66) and Acid Violet 7 (AV7), are used to assess the photocatalytic activities of a variety of different materials, such as commercial paint, tiles and glass and laboratory made samples of sol–gel coated glass and paint, which collectively exhibit a wide range of activities that cannot currently be probed by any one of the existing ISO tests. Unlike the ISO tests, the ink tests are fast (typically <10 min), simple to employ and inexpensive. Previous work indicates that the Rz ink test at least correlates linearly with other photocatalytic tests such as the photomineralisation of stearic acid. The average time to bleach 90% of the key RGB colour component of the ink, red for Rz and BB66 inks and green for AV7 ink, is determined, ttb(90), for eight samples of each of the different materials tested. Five laboratories conducted the tests and the results revealed an average repeatability and reproducibility of: ca. 11% and ca 21%, respectively, which compare well with those reported for the current ISO tests. Additional work on commercial self-cleaning glass using an Rz ink showed that the change in the red component of the RGB image of the ink correlated linearly with that of the change of absorbance at 608 nm, as measured using UV/vis spectroscopy, and the change in the a* component of the Lab colour analysis of the ink, as measured using diffuse reflectance spectroscopy. As a consequence, all three methods generate the same ttb(90). The advantages of the RGB digital image analysis method are discussed briefly.
Resumo:
The azo dye, basic blue 66 (BB66) is used in a photocatalyst activity indicator ink (paii) to assess the activity of low activity photocatalytic surfaces, such as commercial photocatalytic tiles and silicone contaminated self-cleaning glass. The BB66 paii is shown to respond much faster than a previously reported, resazurin (Rz) based paii, i.e. the use of a BB66 paii on low activity self-cleaning tiles was found to be >6 times faster than the Rz paii. The BB66 paii is also shown to be effective at assessing the activity of piece of commercial self-cleaning glass contaminated with a coating of silicone, on which the Rz ink, in contrast, failed to show any significant change in colour over the same time period.
Resumo:
A resazurin (Rz) based photocatalyst activity indicator ink (paii) is used to test the activity of commercial self-cleaning materials. The semiconductor photocatalyst driven colour change of the ink is monitored indoors and outside using a simple mobile phone application that measures the RGB colour components of the digital image of the paii-covered, irradiated sample in real time. The results correlate directly with those generated using a traditional, lab-bound method of analysis (UV–vis spectrophotometry).
Resumo:
Solar water disinfection (SODIS) is a well-established inexpensive means of water disinfection in developing countries, but lacks an indicator to illustrate its end-point. A study of the solar UV dosage required for SODIS, in order to achieve a bacteria concentration below the detection limit for: Escherichia coli, Enterococcus spp. and Clostridium perfringens, in water in PET bottles, PE and PE/EVA bags showed disinfection to be most efficient in PE bags, with a solar UV (290–385 nm) dose of 389 kJ m−2 required. In parallel to the disinfection experiments, a range of polyoxometalate, semiconductor photocatalysis and photodegradable dye-based solar UV dosimeter indicators were tested under the same solar UV irradiation conditions. All three types of dosimeter produced indicators that largely and significantly change colour upon exposure to 389 kJ m−2 solar UV; further indicators are reported which change colour at higher doses and hence would be suitable for the less efficient SODIS containers tested. All indicators tested were robust, easy to use and inexpensive so as not to add significantly to the attractive low cost of SODIS. Furthermore, whilst semiconductor photocatalyst and photodegradable dye based indicators are disposable, one-use systems, the polyoxometalate based indicators recover colour in the dark overnight, allowing them to be reused, and hence further decreasing the cost of using indicators during the implementation of the SODIS method.
Resumo:
Novel, reversible (reusable) photocatalyst activity indicator labels, which undergo a rapid colour change when in contact with a photocatalytic film via the photoreduction of methylene blue contained within the label’s adhesive, are explored as a method for assessing the activity of self-cleaning glass in situ and the laboratory, using digital photography.
The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity
Resumo:
Although the NO removal-based air-purification ISO method ISO 22197-1:2007 is well established, its preconditioning requirements mean that only the initial activity of the photocatalyst under test is measured owing to the often-reported, gradual alteration of the surface kinetics for NO oxidation by air through the accumulation of surface HNO3. Herein, we compare the photocatalytic NO removal abilities of a number of different, common TiO2 materials, surface-saturated with photogenerated HNO3, with their behaviours observed during the typical 5 h-long ISO standard test. It is found that all the TiO2 materials studied eventually become largely NO to NO2 converters after sufficient exposure to NO under irradiation (>5 h) due to the accumulation of surface HNO3. The UV exposure time, t*, necessary to reach this HNO3 saturated condition is different for each different catalyst. As a consequence, an alternative preconditioning process for the ISO method is proposed which can be used to provide a more realistic measure of the photocatalytic activity of the underlying material and provide a measure of the NOx removing capacity of the photocatalytic material under test.
Resumo:
The semiconductor photocatalysed (SPC) oxidation of toluene is performed inside an NMR spectrometer and the reaction monitored simultaneously in-situ, using a fibre optic probe/diffuser to provide the UV light to activate the titania photocatalyst coating on the inside of the NMR tube. Such a system has great potential for the simple rapid screening of a wide range of SPC mediated organic reactions.
Resumo:
Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.
Resumo:
The photocatalytic reactor described in the NOx removal ISO 22197-1:2007 is used to study the kinetics of the process, using a film of P25 TiO2 which has either been conventionally pre-irradiated in a stream of air, or unconventionally in a stream of NO (1 ppmv). In the former case it is shown that the system does not achieve steady state exit levels of NO, probably due to the gradual accumulation of HNO3 on the surface of the photocatalyst. The NO-preconditioned TiO2 film demonstrated excellent steady-state levels when monitored as a function of NO concentration, [NO] and UV irradiance, ρ. However, in this case the photocatalytic reaction under study is NOT NOx removal, but the conversion of NO to NO2. It is shown that the kinetics of this steady state process fit very well to a kinetic expression based on a disrupted adsorption reaction mechanism, which has also been used by others to fit their observed (non-steady state) kinetics for NOx removal on conventionally-(air) preconditioned films of P25. The appropriateness of this model for either system is questioned, since in both systems the kinetics appear to have a significant mass transport element. These findings suggest that mass transport and non-steady-state kinetics are likely to be significant features for most active photocatalytic samples, where the %NO conversion is >7%, and so limits the usefulness of the NOx removal ISO 22197-1:2007.