931 resultados para peak symmetry
Resumo:
This thesis details the investigations of the unconventional low-energy quasiparticle excitations in electron-type cuprate superconductors and electron-type ferrous superconductors as well as the electronic properties of Dirac fermions in graphene and three-dimensional strong topological insulators through experimental studies using spatially resolved scanning tunneling spectroscopy (STS) experiments.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112) TC = 43 K, are investigated experimentally. For temperature (T) less than the superconducting transition temperature (TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with two coherence peaks and no satellite features. For magnetic field measurements at T < TC, first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra are revealed inside the core of vortices, where superconductivity is suppressed. The intra-vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values characterized by Δpk-pk(H) >VPG, and Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type "122" iron-based Ba(Fe1-xCox)2As2 are investigated for multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting gaps decrease monotonically in size with increasing temperature and disappear for temperatures above the superconducting transition temperature, TC. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps have been identified in the tunneling quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-changing s-wave superconductivity.
Additionally spatial scanning tunneling spectroscopic studies are performed on mechanically exfoliated graphene and chemical vapor deposition grown graphene. In all cases lattice strain exerts a strong influence on the electronic properties of the sample. In particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and charging effects resulting in quantized conductance peaks associated with the integer and fractional Quantum Hall States.
Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance in the surface state. The impurities are in the unitary limit and the spectral resonances are localized spatially to within ~ 0.2 nm of the impurity. The spectral weight of the impurity resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery of the surface state suggests robust topological protection against perturbations that preserve time reversal symmetry.
Resumo:
For a toric Del Pezzo surface S, a new instance of mirror symmetry, said relative, is introduced and developed. On the A-model, this relative mirror symmetry conjecture concerns genus 0 relative Gromov-Witten of maximal tangency of S. These correspond, on the B-model, to relative periods of the mirror to S. Furthermore, for S not necessarily toric, two conjectures for BPS state counts are related. It is proven that the integrality of BPS state counts of the total space of the canonical bundle on S implies the integrality for the relative BPS state counts of S. Finally, a prediction of homological mirror symmetry for the open complement is explored. The B-model prediction is calculated in all cases and matches the known A-model computation for the projective plane.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.
For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.
To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.
The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.
The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.
Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.
We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.
Resumo:
A set of coupled-channel differential equations based on a rotationally distorted optical potential is used to calculate the wave functions required to evaluate the gamma ray transition rate from the first excited state to the ground state in ^(13)C and ^(13)N. The bremsstrahlung differential cross section of low energy protons is also calculated and compared with existing data. The marked similarity between the potentials determined at each resonance level in both nuclei supports the hypothesis of the charge symmetry of nuclear forces by explaining the deviation of the ratios of the experimental E1 transition strengths from unity.
Resumo:
Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.
Resumo:
In this paper, some observations are made following a flash-flood that occurred in Stake Clough, a small tributary of the River Goyt, during the evening of 6 August 1996. The site was visited eight times between 8 August - 30 October 1996 to take samples and make observations on the stream. The flood scoured the bed of Stake Clough but more significantly, caused it to change course along the middle part of the floodplain. Initially after the flood, the numbers of insects in all stretches of the stream channel were low (100-200 m super(2)), but then gradually rose to population densities approaching ten times this figure. The benthos was dominated by the Chironomidae and also leuctrid stoneflies (Leuctra nigra, L. hippopus and L. inermis). On 8th August 1996, 12 mesh bags, each containing oak leaves, were placed in the stream and collected after 24 hours. These were also dominated by chironomids, and contained relatively high numbers of the caddis, Potamophylax cingulatus.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.