979 resultados para organic P
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Resumo:
Sensors to detect toxic and harmful gases are usually based on metal oxides that are operated at elevated temperature. However, enabling gas detection at room temperature (RT) is a significant ongoing challenge. Here, we address this issue by demonstrating that microrods of semiconducting CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) with nanostructured features can be employed as conductometric gas sensors operating at 50°C for detection of oxidizing and reducing gases such as NO2 and NH3. The sensor is evaluated at RT and up to 200°C. It was found that CuTCNQ is transformed into a N-doped CuO material with p-type conductivity when annealed at the maximum temperature. This is the first time that such a transformation, from a semiconducting charge transfer material into a N-doped metal oxide is detected. It is shown here that both the surface chemistry and the type of majority charge carrier within the sensing layer is critically important for the type of response towards oxidizing and reducing gases. A detailed physical description of NO2 and NH3 sensing mechanism at CuTCNQ and N-doped CuO is provided to explain the difference in the response. For the N-doped CuO sensor, a detection limit of 1 ppm for NO2 and 10 ppm for NH3 are achieved.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
Attention is directed at land application of piggery effluent (containing urine, faeces, water, and wasted feed) as a potential source of water resource contamination with phosphorus (P). This paper summarises P-related properties of soil from 0-0.05 m depth at 11 piggery effluent application sites, in order to explore the impact that effluent application has had on the potential for run-off transport of P. The sites investigated were situated on Alfisol, Mollisol, Vertisol, and Spodosol soils in areas that received effluent for 1.5-30 years (estimated effluent-P applications of 100-310000 kg P/ha in total). Total (PT), bicarbonate extractable (PB), and soluble P forms were determined for the soil (0-0.05 m) at paired effluent and no-effluent sites, as well as texture, oxalate-extractable Fe and Al, organic carbon, and pH. All forms of soil P at 0-0.05 m depth increased with effluent application (PB at effluent sites was 1.7-15 times that at no-effluent sites) at 10 of the 11 sites. Increases in PB were strongly related to net P applications (regression analysis of log values for 7 sites with complete data sets: 82.6 % of variance accounted for, p <0.01). Effluent irrigation tended to increase the proportion of soil PT in dilute CaCl2-extractable forms (PTC: effluent average 2.0 %; no-effluent average 0.6%). The proportion of PTC in non-molybdate reactive forms (centrifuged supernatant) decreased (no-effluent average, 46.4 %; effluent average, 13.7 %). Anaerobic lagoon effluent did not reliably acidify soil, since no consistent relationship was observed for pH with effluent application. Soil organic carbon was increased in most of the effluent areas relative to the no-effluent areas. The four effluent areas where organic carbon was reduced had undergone intensive cultivation and cropping. Current effluent management at many of the piggeries failed to maximise the potential for waste P recapture. Ten of the case-study effluent application areas have received effluent-P in excess of crop uptake. While this may not represent a significant risk of leaching where sorption retains P, it has increased the risk of transport of P by run-off. Where such sites are close to surface water, run-off P loads should be managed.
Papers Presented At The National Symposium On Bio-Organic Chemistry, Bangalore, July 1982 - Foreword
Resumo:
The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.
Resumo:
TRANSFORMATIONS OF NATURE Science, Knowledge and Freedom in the Early Thinking of Rudolf Steiner. Perspectives on Waldorf Education in the light of the History of Ideas Waldorf Education is based on the worldview that Rudolf Steiner (1861-1925) developed to a wide-ranging anthroposophical movement in the first decades of the 20th century. This thesis takes as its departure the early thinking of Rudolf Steiner that precedes anthroposophy, and its main purpose is to uncover the tradition of ideas represented in Steiner´s early life and which, in different ways, have emerged in the practice of Waldorf Education. Through systematic analysis I attempt to bring to light different aspects of Steiner’s early thinking: his concept of science, his epistemological startingpoints and his philosophy of freedom. By departing from J. W. Goethe’s qualitative concept of science, Steiner strove in his early works to formulate a monistic worldview which appears to be closely related to the Romantic Movement and its philosophy of nature. Characteristic traits of his thinking are, on the one hand, a critique of a one-sided enlightenment and, on the other hand, an aspiration to see the world as a living organic unity. Human beings can, by developing our intuitive faculties, get a deeper understanding of the indissoluble relationship between man and nature. Against this background Steiner´s early thinking can be read as a special kind of romantic development narrative. Steiner’s early thinking also opens the way for romantic perspectives on Waldorf Education. It appears that many central aims and conceptions in Waldorf Education can be illuminated by the epistemological perspective upon which Steiner elaborated early in his life. An organic curriculum, phenomenological didactics and high ideal of freedom can be considered seen as educational applications of conceptions that played an important role in Goethe and his age. Thus, Waldorf Education provides in our contemporary society an exceptional set of educational values: a holistic education with romantic undertones.
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.
Resumo:
Insects can cause considerable damage in hardwood plantations and because pesticide use is controversial, future pest management may rely on manipulating insect behaviour. Insects use infochemical cues to identify and locate mates and host plants and this can be used to manipulate their behaviour and reduce pest impacts in plantations. Infochemicals include chemical signals produced by insects, such as pheromones and kairomones, or those produced by host plants as odours or volatiles that are attractive to insects. This research is learning how insects perceive and interact with chemical cues or infochemicals in their environment and how these interactions can be manipulated for monitoring and control. Pest species being investigated include the giant wood moth (Endoxyla cinerea), Culama wood moths, the eucalypt leaf beetle (Paropsis atomaria), red cedar tip moth (Hypsipyla robusta) and several longicorn wood borers. The project will contribute to new strategies for minimising damage and controlling pest densities in Queensland's hardwood plantations.
Resumo:
Banana prawn (Fenneropenaeus merguiensis) juveniles (1-2 g) were compared for survival, growth and condition after feeding in tanks over one month with several simple diets based on organically certified whole wheat flour. All feeds were applied once per day at 6% of the starting body weight, and produced high survival (>94%). A commercial Australian prawn feed used as the control diet produced the highest (P<0.05) growth (101% weight gain) and condition measured as the length of antennae (13.2 cm). The unfed control had significantly (P<0.05) lower survival (56%), and resulted in a weight loss (3.1%) and the shortest antennae (9.4 cm). Adding free flour to tanks produced lower (P<0.05) growth (6.9%) and shorter (P<0.05) antennae (10.3 cm) than adding pelletised flour with low levels (dry weight) of additional nutritional substances and feed attractants (chicken’s whole egg: 1.5%, polychaete slurry: 1.1% and 6.8%, molasses: 4.2%). Rolling the flour into a dough ball also appeared to marginally improve its direct utilisation by the prawns. These results are considered within the context of appropriate nutrition for Penaeids and successfully producing certified organic prawns in Australia.
Resumo:
The survival and growth of black tiger prawn (Penaeus monodon) juveniles (~3.3 g) were compared after feeding in tanks over one month with several prepared diets based on organically certified ingredients. The extrusion process in the manufacture of pelletised experimental diets was similar to processes used in commercial plants and was closely documented. The daily feeding rate (6% of starting mean body weight) was split equally into two feeds, one in the morning and one in the afternoon. All diets tested produced high survival (97-100%). A widely-used commercial Australian prawn feed was used as a control diet. It contained 41.2% protein with 29.5 g kg-1 lysine, and produced the highest (P<0.05) growth (117% weight gain). Three of the experimental organic diets tested (namely, 1. wheat + soy, 2. pig weaner diet + soy, and 3. pig weaner diet + dried fish waste) produced moderate growth (73–77% weight gain). These contained 33%, 36% or 31% protein, respectively, and produced better (P<0.05) growth than diets utilising a range of other prospective ingredients (eg: wheat + dried scallop gut, wheat + fish waste, wheat + chickpea, or wheat + macadamia meal, containing 23%, 25%, 29% or 24% protein, respectively). An unfed control-treatment produced the lowest (P<0.05) growth (4% weight gain). The water stability of the experimental diets that produced the best growth was poorer than the commercial diet, suggesting that improvements in this aspect of these organic feed’s manufacture could result in additional performance benefits and possibly reduced feed wastage. Analyses revealed a linear relationship between diet performance (in terms of weight gains) and the protein and lysine contents of diets. About 70% of diet performance was explained by these factors. The superior performance of the commercial diet could be attributed primarily to its formulation using mainly marine proteins, as well as a range of other unknown factors (commercial in confidence). These other factors range from use of feed attractants, better knowledge of ingredient nutrient availability, different extrusion conditions and the use of other unspecified micro-nutrients not present in the experimental diets. The organic diets studied still require a degree of fine-tuning before structured commercial uptake. This would sensibly include further detailed investigations of the composition and nutrient availabilities of these and other organic dietary ingredients, and refinement of the extrusion process for formulated diets.