993 resultados para optical processing
Resumo:
Während in den letzten Jahren zahlreiche Biosensoren zum spezifischen Nachweis von DNA entwickelt wurden, ist die Anwendung oberflächen-sensitiver Methoden auf enzymatische Reaktionen ein vergleichsweise neues Forschungsgebiet. Trotz der hohen Empfindlichkeit und der Möglichkeit zur Echtzeit-Beobachtung molekularer Prozesse, ist die Anwendung dieser Methoden nicht etabliert, da die Enzymaktivität durch die Nähe zur Oberfläche beeinträchtigt sein kann. Im Rahmen dieser Arbeit wurde die enzymatische Verlängerung immobilisierter DNA durch eine DNA Polymerase mit Hilfe von Oberflächenplasmonen-Fluoreszenzspektroskopie (SPFS) und einer Quarzkristall-Mikrowaage (QCM) untersucht. Die Synthese von DNA wurde im Fall der QCM als Massenzuwachs detektiert, der sich im Abfall der Resonanzfrequenz des Schwingquarzes und einem Anstieg seiner Dissipationsenergie ausdrückte. Die viskoelastischen Eigenschaften der DNA-Schichten wurden bestimmt, indem die erhaltenen Daten mit einem auf Voigt basierenden Modell ausgewertet wurden. SPFS nutzt das evaneszente elektromagnetische Feld, das mit Oberflächenplasmonen einhergeht, zur oberflächen-sensitiven Anregung von Chromophoren. Auf diese Weise wurde der Einbau von Farbstoff-markierten Nukleotiden in die entstehende DNA-Sequenz als Indikator für das Voranschreiten der Reaktion ausgenutzt. Beide Meßtechniken konnten erfolgreich zum Nachweis der DNA-Synthese herangezogen werden, wobei die katalytische Aktivität des Enzyms vergleichbar zu der in Lösung gemessenen war.
Resumo:
The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.
Resumo:
Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.
Resumo:
In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.
Resumo:
The report reviews the technology of Free-space Optical Communication (FSO) and simulation methods for testing the performance of diverged beam in the technology. In addition to the introduction, the theory of turbulence and its effect over laser is also reviewed. In the simulation revision chapter, on-off keying (OOK) and diverged beam is assumed in the transmitter, and in the receiver, avalanche photodiode (APD) is utilized to convert the photon stream into electron stream. Phase screens are adopted to simulate the effect of turbulence over the phase of the optical beam. Apart from this, the method of data processing is introduced and retrospected. In the summary chapter, there is a general explanation of different beam divergence and their performance.
Resumo:
Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
Methods for optical motion capture often require timeconsuming manual processing before the data can be used for subsequent tasks such as retargeting or character animation. These processing steps restrict the applicability of motion capturing especially for dynamic VR-environments with real time requirements. To solve these problems, we present two additional, fast and automatic processing stages based on our motion capture pipeline presented in [HSK05]. A normalization step aligns the recorded coordinate systems with the skeleton structure to yield a common and intuitive data basis across different recording sessions. A second step computes a parameterization based on automatically extracted main movement axes to generate a compact motion description. Our method does not restrict the placement of marker bodies nor the recording setup, and only requires a short calibration phase.
Resumo:
Indoor positioning is the backbone of many advanced intra-logistic applications. As opposed to unified outdoor satellite positioning systems, there are many different technical approaches to indoor positioning. Depending on the application, there are different trade-offs between accuracy, range, and costs. In this paper we present a new concept for a 4-degree-of-freedom (4-DOF) positioning system to be used for vehicle tracing in a logistic facility. The system employs optical data transmission between active infrastructure and receiver devices. Compared to existing systems, these optical technologies promise to achieve better accuracy at lower costs. We will introduce the positioning algorithm and an experimental setup of the system.
Resumo:
Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary ring (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and recently surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA’s Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. A first series of surveys of Molnjya-type orbits was performed between January and April 2013. During these four months survey observations were performed during nine nights. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly discovered faint objects were also acquired with AIUB ́s 1m ZIMLAT telescope in Zimmerwald, Switzerland. Eventually 195 basic surveys were performed during these nine nights corresponding to about 32.5 hours of observations. In total 24 uncorrelated faint objects were discovered and all known catalogue objects in the survey fields were detected. On average one uncorrelated object was found every 80 minutes. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.
Resumo:
Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.
Resumo:
Pre-clinical studies using murine models are critical for understanding the pathophysiological mechanisms underlying immune-mediated disorders such as Eosinophilic esophagitis (EoE). In this study, an optical coherence tomography (OCT) system capable of providing three-dimensional images with axial and transverse resolutions of 5 µm and 10 µm, respectively, was utilized to obtain esophageal images from a murine model of EoE-like disease ex vivo. Structural changes in the esophagus of wild-type (Tslpr(+/+) ) and mutant (Tslpr(-/-) ) mice with EoE-like disease were quantitatively evaluated and food impaction sites in the esophagus of diseased mice were monitored using OCT. Here, the capability of OCT as a label-free imaging tool devoid of tissue-processing artifacts to effectively characterize murine EoE-like disease models has been demonstrated.