933 resultados para optical fabrication


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses the fabrication of two-dimensional photonic crystal mask layer patterns. Photonic crystal patterns having holes with smooth and straight sidewalls are achieved by optimizing electron beam exposure doses during electron beam lithography process. Thereafter, to precisely transfer the patterns from the beam resist to the SiO2 mask layer, we developed a pulse-time etching method and optimize various reaction ion etching conditions. Results show that we can obtain high quality two-dimensional photonic crystal mask layer patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 4 x 4 strictly nonblocking thermo-optical switch matrix based on Mach-Zehnder (MZ) switching unit was designed and fabricated in silicon-on-insulator (SOI) wafer. The paired multi-mode interferometers (MMI) were used as power splitters and combiners in MZ structures. The device presents an average insertion loss of 17 dB and an average crosstalk of 16.5 dB. The power consumption needed for operation is reduced to 0.288 W by adding isolating trenches. The switching time of the device is about 15 mu s, which is much faster than that of silica-based switches. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOI (silicon-on-insulator) is a new material with a lot of important performances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2X2 thermal-optical switch were successfully designed and fabricated. Based on these, 4X4 and 8X8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermo-optical waveguide switch matrix is designed and fabricated on silicon-on-insulator wafer. Multi-mode interferometers are used as power splitters and combiners in a Mach-Zehnder structure. Inductively coupled plasma reactive ion etching is used to fabricate the waveguides. The rise and fall times of the switch matrix are 13 mu s and 7 mu s, respectively. Switch cells have an average switching power consumption of 340 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A resonant-cavity enhanced reflective optical modulator is designed and frabricated, with three groups of three highly strained InGaAS/GaAs quantum wells in the cavity, for the low voltage and high contrast ratio operation. The quantum wells are positioned in antinodes of the optical standing wave. The modulator is grown in a single growth step in an molecular beam epitaxy system, using GaAs/AIAs distributed Bragg reflectors as both the top and bottom mirrors. Results show that the reflection device has a modulation extinction of 3 dB at -4.5 V bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the fabrication of Si-based double-hetero-epitaxial silicon on insulator (SOI) structure Si/gamma-Al2O3/Si. Firstly, single crystalline gamma-Al2O3(100) insulator films were grown epitaxially on Si(100) using the sources of TMA (Al(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. Afterwards, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a chemical vapor deposition method similar to the silicon on sapphire epitaxial growth. The Si/gamma-Al2O3/Si SOL materials are characterized in detail by reflect high-energy electron diffraction, X-ray diffraction and Auger energy spectrum (AES) techniques. The insulator layer of gamma-Al2O3 has an excellent dielectric property. The leakage current is less than 1 x 10(-10) A/cm(2) when the electric field is below 1.3 MV/ cm. The Si film grown on gamma-Al2O3/Si epi-substrates was single crystalline. Meanwhile, the AES depth profile of the SOL structure shows that the composition of gamma-Al2O3 film is uniform, and the carbon contamination is not observed. Additionally, the gamma-Al2O3/Si epi-substrates are suitable candidates as a platform for a variety of active layers such as GaN, SiC and GeSi. It shows a bright future for microelectronic and optical electronics applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MMI coupler with large cross section has low coupling loss between the device and fiber. However, large chip area is required. Recently proposed N x N tapered MMI coupler shows a substantial reduction in device geometry. No such kind of devices with N > 2 has yet been realized up to now. The authors have demonstrated a 4 x 4 parabolically tapered MMI coupler with large cross section that can match the SM fiber in silicon-on-insulator (SOI) technology. The device exhibits a minimum uniformity of 0.36 dB and excess loss of 3.7 dB, It represents a key component for realization of MMI-based silicon integrated optical circuit technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors demonstrate a 3dB 2 x 2 parabolically tapered multimode interference (MMT) coupler with a large cross-section and space between the different ports using silicon-on-insulator technology. The device exhibits a uniformity of < 0.8dB and can be used in the realisation of an MMI-based optical switch with a high extinction ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interdigital metal-semiconductor-metal (MSM) ultraviolet photoconductive detectors have been fabricated on undoped GaN films grown by molecular beam epitaxy (MBE), Response dependence on wavelength, applied current, excitation powers and chopper frequency has been extensively investigated. It is shown that the photodetector's spectral response remained nearly constant for wavelengths above the band gap and dropped sharply by almost three orders of magnitude for wavelengths longer than the band gap. It increases linearly with the applied constant current, but very nonlinearly with illuminating power. The photodetectors showed high photoconductor gains resulting from trapping of minority carriers (holes) at acceptor impurities or defects. The results demonstrated the high quality of the GaN crystal used to fabricate these devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various high-speed laser modules are fabricated by TO-Packaged processes, such as FP laser modules, DFB laser modules, and VCSEL modules. Furthermore,, the resonance among the circuit elements provides an approach to compensating the TO packaging parasitics, and improving the frequency response of the devices. The detailed equivalent circuit model is established to investigate both the laser diode and packaging comprehensively. The small-signal modulation bandwidths of the TO packaged FP laser, DFB laser and the VCSEL modules are more than 10, 9.7 and 8 GHz, respectively.