922 resultados para muscle growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes. Purpose We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise. Methods Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22+-0.5 yrs) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80% 1 RM. Results Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68+ macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent. Conclusion In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of barley and oat grain supplements on hay dry matter intake (DMI), carcass components gain and meat quality in lambs fed a low quality basal diet was examined. Thirty five crossbred wether lambs (9 months of age) were divided into four groups. After adaptation to a basal diet of 85% oat hay and 15% lucerne hay for one week, an initial group of 11 was slaughtered. The weights of carcass components and digesta-free empty body weight (EBW) of this group was used to estimate the weight of carcass components of the other three experimental groups at the start of the experiment. The remaining three groups were randomly assigned to pens and fed ad libitum the basal diet alone (basal), basal with 300 g air dry barley grain (barley), basal with 300 g air dry oat grain (oat). Supplements were fed twice weekly (i.e., 900 g on Tuesday and 1200 g on Friday). After 13 weeks of feeding, animals were slaughtered and, at 24 h post-mortem meat quality and subcutaneous fat colour were measured. Samples of longissimus muscle were collected for determination of sarcomere length and meat tenderness. Hay DMI was reduced (P<0.01) by both barley and oat supplements. Lambs fed barley or oat had a higher and moderate digestibility of DM, and a higher intake of CP (P<0.05) and ME (P<0.01) than basal lambs. Final live weight of barley and oat lambs was higher (P<0.05) than basal, but this was not reflected in EBW or hot carcass weight. Lambs fed barley or oat had increases in protein (P<0.01) and water (P<0.001) in the carcass, but fat gain was not changed (P>0.05). There were no differences in eye muscle area or fat depth (total muscle and adipose tissue depth at 12th rib, 110 mm from midline; GR) among groups. The increased levels of protein and water components in the carcass of barley and oat fed lambs, associated with improved muscle production, were small and did not alter (P>0.05) any of the carcass/meat quality attributes compared to lambs fed a low quality forage diet. Feeding barley or oat grain at 0.9–1% of live weight daily to lambs consuming poor quality hay may not substantially improve carcass quality, but may be useful in maintaining body condition of lambs through the dry season for slaughter out of season

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain feeding low bodyweight, cast-for-age (CFA) sheep from pastoral areas of eastern Australia at the end of the growing season can enable critical carcass weight grades to be achieved and thus yield better economic returns. The aim of this work was to compare growth and carcass characteristics for CFA Merino ewes consuming either simple diets based on whole sorghum grain or commercial feed pellets. The experiment also compared various sources of additional nitrogen (N) for inclusion in sorghum diets and evaluated several introductory regimes. Seventeen ewes were killed initially to provide baseline carcass data and the remaining 301 ewes were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 33 or 68 days. Concentrate treatments were: (i) commercial feed pellets, (ii) sorghum mix (SM; whole sorghum grain, limestone, salt and molasses) + urea and ammonium sulfate (SMU), (iii) SMU + whole cottonseed at 286 g/kg of concentrate dry matter (DM), (iv) SM + cottonseed meal at 139 g/kg of concentrate DM, (v) SMU + virginiamycin (20 mg/kg of concentrate) for the first 21 days of feeding, and (vi) whole cottonseed gradually replaced by SMU over the first 14 days of feeding. The target carcass weight of 18 kg was achieved after only 33 days on feed for the pellets and the SM + cottonseed meal diet. All other whole grain sorghum diets required between 33 and 68 days on feed to achieve the target carcass weight. Concentrates based on whole sorghum grain generally produced significantly (P < 0.05) lower carcass weight and fat score than pellets and this may have been linked to the significantly (P < 0.05) higher faecal starch concentrations for ewes consuming sorghum-based diets (270 v. 72 g/kg DM on day 51 of feeding for sorghum-based diets and pellets, respectively). Source of N in whole grain sorghum rations and special introductory regimes had no significant (P > 0.05) effects on carcass weight or fat score of ewes with the exception of carcass weight for SMU + whole cottonseed being significantly lower than SM + cottonseed meal at day 33. Ewes finished on all diets produced acceptable carcasses although muscle pH was high in all ewe carcasses (average 5.8 and 5.7 at 33 and 68 days, respectively). There were no significant (P > 0.05) differences between diets in concentrate DM intake, rumen fluid pH, meat colour score, fat colour score, eye muscle area, meat pH or meat temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart transplantation is the only therapeutic modality for many end-stage heart diseases but poor long-term survival remains a challenging problem. This is mainly due to the development of cardiac allograft arteriosclerosis (TxCAD) that is an accelerated form of coronary artery disease. Both traditional cardiovascular and transplantation-related risk factors for TxCAD have been identified but options for therapy are limited. TxCAD involves dysfunction of cardiac allograft vascular cells. Activated endothelial cells (EC) regulate allograft inflammation and secrete smooth muscle cell (SMC) growth factors. In turn, SMC and their progenitors invade the intima of the injured vessels and occlude the affected coronary arteries. Different vascular growth factors have to be delicately regulated in normal vascular development. In the present study, experimental heterotopic transplantation models were used to study the role of angiogenic and pro-inflammatory vascular endothelial growth factor (VEGF), EC growth factor angiopoietin (Ang), and SMC mitogen platelet-derived growth factor (PDGF) in the development of TxCAD. Pharmacological and gene transfer approaches were used to target these growth factors and to assess their therapeutic potential. This study shows that alloimmune response in heart transplants upregulates VEGF expression, and induces allograft angiogenesis that involves donor-derived primitive EC. Intracoronary adenoviral VEGF gene transfer increased macrophage infiltration, intimal angiogenesis and TxCAD. VEGF inhibition with PTK787 decreased allograft inflammation and TxCAD, and simultaneous PDGF inhibition with imatinib further decreased TxCAD. Specific inhibition of two VEGF-receptors (VEGFR) decreased allograft inflammation and TxCAD, and VEGFR-2 inhibition normalized the density of primitive and mature capillaries in the allografts. Adenovirus-mediated transient Ang1 expression in the allograft had anti-inflammatory and anti-arteriosclerotic effects. Adeno-associated virus (AAV)-mediated prolonged Ang1 or Ang2 expression had similar anti-inflammatory effects. However, AAV-Ang1 activated allograft SMC whereas AAV-Ang2 had no effects on SMC activation and decreased the development of TxCAD. These studies indicate an interplay of inflammation, angiogenesis and arteriosclerosis in cardiac allografts, and show that vascular growth factors are important regulators in the process. Also, VEGF inhibition, PDGF inhibition and angiopoietin therapy with clinically-relevant pharmacological agents or novel gene therapy approaches may counteract vascular dysfunction in cardiac allografts, and have beneficial effects on the survival of heart transplant patients in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: Tagging and the recovery of tagged yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas are important aspects of the investigations conducted by the Inter-American Tropical Tuna Commission in the Eastern Tropical Pacific Ocean. The results of the tagging program provide information on population structures, migrations, mortality rates and growth rates of these two species. The present experimental program was undertaken to study the relationship between muscular fatigue and high tagging mortalities in yellowfin and skipjack. SPANISH: La marcación del atún aleta amarilla (Thunnus albacares) y del barrilete (Katsuwonus pelamis), y el recobro de estos atunes marcados, son aspectos importantes de la investigación que efectúa la Comisión Interamericana del Atún Tropical en el Océano Pacífico Oriental Tropical. Los resultados del programa de marcación proporcionan información sobre la estructura de las poblaciones, migraciones, tasas de mortalidad y tasas de crecimiento de estas dos especies. El programa experimental presente fue emprendido para estudiar la relación entre la fatiga muscular y la alta mortalidad causada por la marcación en el atún aleta amarilla y el barrilete. (PDF contains 52 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in body muscle composition of Clarias gariepinus were studied in fish reared from 1.08 g to 383 g mean body weight in a 201-day culture period. Changes in the amount of protein content, dry matter and ash free dry matter in the muscle tissue can be described as a function of body weight. The percentage of protein content was observed to be higher in bigger fish. Fat content was low throughout the fingerling stage. Specific growth rate decreased significantly at 400 g mean body weight (P<0.05) while feed conversion rate increased. The conclusion, based on the culture conditions in this study, is that the optimal weight for harvesting C. gariepinus is 400 g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of salinity (0, lO and 20%o, water temperature 28 ± l oC) on food consumption and growth of juvenile Nile tilapia, Oreochromis niloticus L. (9.94 ± 0.15 g) were investigated by feeding group of 20 fish at 2% body weight day. Individual food consumption was measured using X-radiography. There were no significant differences in growth or white muscle protein concentrations among groups. During feed deprivation, weight loss was similar for fish held at O%o and 10 %o salinity, but after 7 days over 50% of the fish maintained at 20%o salinity developed lesions covering 5-25% of the body. No significant relationships were observed between individual specific growth rates and food consumption rates within the groups. The fish in all salinity groups showed a negative correlation between specific growth rate and food conversion ratio. The coefficient of variation for wet weight specific food consumption and the mean share of meal for each fish were used as a measure of social hierarchy strength. A negative correlation was observed between coefficient of variation in food consumption and mean share of meal. The social hierarchy structure was similar in all salinities; 25% of the fish were dominant (18.29% above an equal share of meal) and 30% were subordinate (16.19% below an equal share of meal) and the remainder 45% fish fed theoretical share of meal (MSM, 5.26%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 90-day experiment was conducted to determine the effect of restricted ration and full feeding on the recovery growth and carcass compositions of fingerlings (average weight - 20.74 ± 0.13 g) of rohu, Labeo rohita (H.). Rohu fingerlings procured from a local fish breeder were fed with commercial pelleted feed (27% crude protein) during the two-week acclimatization in the laboratory condition. Experimental pelleted diet (30% crude protein) was prepared and the control group (T sub(CFR)) was fed at 3% of body weight for the 90-day trial period. The experimental group T sub(1FR) was fed for three days at 1% of body weight and the next three days at 3% of body weight, T sub(2FR) was fed for seven days at 1% of body weight and the next seven days at 3% of body weight, T sub(3FR) was fed for 15 days at l% of body weight and the 15 days at 3% of body weight and T sub(4FR) was fed for 25 days at 1% of body weight and the next 25 days at 3% of body weight, alternating between 1 and 3% for the specified period during the 90-day trial period. Daily rations were divided into two equal meals per day at 09.00 and 16.00 hours. Average percent survival rate of rohu during the 90-day trial period was more than 90. Percent live weight gain (98.90 ± 0.34, 113.0 ± 5.93, 125.71 ± 11.01 and 141.90 ± 2.89), specific growth rate (1.53 ± 0.01 1.68 ± 0.06, 1.80 ± 0.10 and 1.96 ± 0.02%/d) and absolute growth rate (1.33 ± 0.13, 1.38 ± 0.07, 1.39 ± 0.04 and 1.44 ± 0.07g/d) of the experimental groups (T sub(1FR), T sub(2FR), T sub(3FR) and T sub(4FR) respectively) increased with the advancement of the experiment in comparison to those in control, T sub(CFR) (90.92 ± 5.81%, 1.44 ± 0.07%/d and 1.34 ± 0.20g/d, respectively) and were proportionately correlated with the degree of deprivation probably through the mechanism of increased feed intake (hyperphagia), feed efficiency ratio or gross growth efficiency, protein efficiency ratio and the superior feed conversion ratio reflecting in better performance index. The body length and muscle composition of fish indicated that recovery growth happened due to protein growth but certainly not due to fat deposition in the gut. Feeding at 1 and 3% of body weight alternating over a period of 25 days might economize the culture operation of rohu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of Tor tor were collected from Bari Reservoir of Udaipur and Narmada River at Hoshangabad (India), in the months of July and November 2005, respectively. Twenty-five samples were collected from each location. Bari Reservoir samples ranged from 17.0 to 24.5 cm in total length and from 75 to 155 g in weight, while Narmada samples ranged from 20.0 to 42.0 cm in length and 90 to 425 g in weight. The nucleic acid content in body muscle of Tor tor and the RNA/DNA ratio were estimated. The age of fishes was estimated by the scale study method and specimens were classified into four age groups. RNA/DNA ratio showed significant linear increase with increase in weight and age till the age of three years after which, the growth rate reduced. The 1-2 year group was the only one common between the two water bodies and a comparison of RNA/DNA ratios showed higher growth rate in Bari Reservoir. The gross primary productivity was also higher in Bari Reservoir being 551 mg cmˉ³ dˉ¹ compared to 404 mg cmˉ³ dˉ¹ observed for Narmada River. The condition factor (K) was found to be higher (1.21) in the fish from the Bari Reservoir compared to those of Narmada River (1.14). The growth rate was higher in females compared to males in >100 g specimens.