970 resultados para motor intervention
Resumo:
The relationship between the quality of parent-child interactions and positive child developmental trajectories is well established (Guralnick, 2006; Shonkoff & Meissels, 2000; Zubrick et al., 2008). However, a range of parental, family, and socio-economic factors can pose risks to parents’ capacity to participate in quality interactions with their children. In particular, families with a child with a disability have been found to have higher levels of parenting stress, and are more likely to experience economic disadvantage, as well as social isolation. The importance of early interventions to promote positive parenting and child development for these families is widely recognised (Shonkoff & Meissels, 2000). However, to date, there is a lack of evidence about the effectiveness of early parenting programs for families who have a young child with a disability. This thesis investigates the impact of a music therapy parenting program, Sing & Grow, on 201 parent-child dyads who attended programs specifically targeted to parents who had a young child with a disability. Sing & Grow is an Australian national early parenting intervention funded by the Australian Government Department of Families, Housing, Community Services and Indigenous Affairs and delivered by Playgroup Queensland. It is designed and delivered by Registered Music Therapists for families with children aged from birth to three years. It aims to improve parenting skills and confidence, improve family functioning (positive parent-child interactions), enhance child development, and provide social networking opportunities to socially isolated families. The intervention targets a range of families in circumstances that have the potential to impact negatively on family functioning. This thesis uses data from the National Evaluation Study of Sing & Grow from programs which were targeted at families who had a young child with a disability. Three studies were conducted to address the objectives of this thesis. Study 1 examines the effects of the Sing & Grow intervention on parent reported pre and post parent mental health, parenting confidence, parenting skills, and child development, and other parent reported outcomes including social support, use of intervention resources, satisfaction with the intervention and perceived benefits of and barriers to participation. Significant improvements from pre to post were found for parent mental health and parent reported child communication and social skills, along with evidence that parents were very satisfied with the program and that it brought social benefits to families. Study 2 explored the pre to post effects of the intervention on children’s developmental skills and parent-child interactions using observational ratings made by clinicians. Significant pre to post improvements were found for parenting sensitivity, parental engagement with child and acceptance of child as well as for child responsiveness to parent, interest, and participation in the intervention, and social skills. Study 3 examined the nature of child and family characteristics that predicted better outcomes for families while taking account of the level of participation in the program. An overall outcome index was calculated and served as the dependent variable in a logistic regression analysis. Families who attended six or more sessions and mothers who had not completed high school were more likely to have higher outcome scores at post intervention than those who attended fewer sessions and those with more educated mothers respectively. The findings of this research indicate that the intervention had a positive impact on participants’ mental health, parenting behaviours and child development and that level of attendance was associated with better outcomes. There was also evidence that the program reached its target of high risk families (i.e., families in which mothers had lower educational levels) and that for these families better outcomes were achieved. There were also indications that the program was accessible and highly regarded by families and that it promoted social connections for participants. A theoretical model of how the intervention is currently working for families is proposed to explain the connections between early parenting, child development and maternal wellbeing. However, more research is required to further elucidate the mechanisms by which the intervention creates change for families. This research presents promising evidence that a short term group music therapy program can elicit important therapeutic benefits for families who have a child with a disability.
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
The broad objective of this study was to understand the incidence and severity of aggression among sexually abused girls who were trafficked and who were then further used for commercial sexual exploitation (referred to subsequently as sexually abused trafficked girls). In addition, the impact of counseling for minimizing aggression in these girls was investigated. A group of 120 sexually abused trafficked Indian girls and a group of 120 nonsexually abused Indian girls, aged 13 to 18, participated in the study. The sexually abused trafficked girls were purposively selected from four shelters located in and around Kolkata, India. The nonsexually abused girls were selected randomly from four schools situated near the shelters, and these girls were matched by age with the sexually abused trafficked girls. Data were collected using a Background Information Schedule and a standardized psychological test, that is, The Aggression Scale. Results revealed that 16.7% of the girls were first sexually abused between 6 and 9 years of age, 37.5% between 10 and 13 years of age, and 45.8% between 14 and 17 years of age. Findings further revealed that 4.2% of the sexually abused trafficked girls demonstrated saturated aggression, and 26.7% were highly aggressive, that is, extremely frustrated and rebellious. Across age groups, the sexually abused trafficked girls suffered from more aggression (p < .05), compared with the nonvictimized girls. Psychological interventions, such as individual and group counseling, were found to have a positive impact on the sexually abused trafficked girls. These findings should motivate counselors to deal with sexually abused children. It is also hoped that authorities in welfare homes will understand the importance of counseling for sexually abused trafficked children, and will appoint more counselors for this purpose.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Objective: With growing recognition of the role of inflammation in the development of chronic and acute disease, fish oil is increasingly used as a therapeutic agent, but the nature of the intervention may pose barriers to adherence in clinical populations. Our objective was to investigate the feasibility of using a fish oil supplement in hemodialysis patients. ---------- Design: This was a nonrandomized intervention study.---------- Setting: Eligible patients were recruited at the Hemodialysis Unit of Wesley Hospital, Brisbane, Queensland, Australia. Patients The sample included 28 maintenance hemodialysis patients out of 43 eligible patients in the unit. Exclusion criteria included patients regularly taking a fish oil supplement at baseline, receiving hemodialysis for less than 3 months, or being unable to give informed consent.---------- Intervention: Eicosapentaenoic acid (EPA) was administered at 2000 mg/day (4 capsules) for 12 weeks. Adherence was measured at baseline and weekly throughout the study according to changes in plasma EPA, and was further measured subjectively by self-report.---------- Results: Twenty patients (74%) adhered to the prescription based on changes in plasma EPA, whereas an additional two patients self-reported good adherence. There was a positive relationship between fish oil intake and change in plasma EPA. Most patients did not report problems with taking the fish oil. Using the baseline data, it was not possible to characterize adherent patients.---------- Conclusions: Despite potential barriers, including the need to take a large number of prescribed medications already, 74% of hemodialysis patients adhered to the intervention. This study demonstrated the feasibility of using fish oil in a clinical population.
Resumo:
Adherence to medicines is a major determinant of the effectiveness of medicines. However, estimates of non-adherence in the older-aged with chronic conditions vary from 40 to 75%. The problems caused by non-adherence in the older-aged include residential care and hospital admissions, progression of the disease, and increased costs to society. The reasons for non-adherence in the older-aged include items related to the medicine (e.g. cost, number of medicines, adverse effects) and those related to person (e.g. cognition, vision, depression). It is also known that there are many ways adherence can be increased (e.g. use of blister packs, cues). It is assumed that interventions by allied health professions, including a discussion of adherence, will improve adherence to medicines in the older aged but the evidence for this has not been reviewed. There is some evidence that telephone counselling about adherence by a nurse or pharmacist does improve adherence, short- and long-term. However, face-to-face intervention counselling at the pharmacy, or during a home visit by a pharmacist, has shown variable results with some studies showing improved adherence and some not. Education programs during hospital stays have not been shown to improve adherence on discharge, but education programs for subjects with hypertension have been shown to improve adherence. In combination with an education program, both counselling and a medicine review program have been shown to improve adherence short-term in the older-aged. Thus, there are many unanswered questions about the most effective interventions to promote adherence. More studies are needed to determine the most appropriate interventions by allied health professions, and these need to consider the disease state, demographics, and socio-economic status of the older-aged subject, and the intensity and duration of intervention needed.
Resumo:
Aim: This paper is a report of a study conducted to determine the effectiveness of a community case management collaborative education intervention in terms of satisfaction, learning and performance among public health nurses. Background: Previous evaluation studies of case management continuing professional education often failed to demonstrate effectiveness across a range of outcomes and had methodological weaknesses such as small convenience samples and lack of control groups. Method: A cluster randomised controlled trial was conducted between September 2005 and February 2006. Ten health centre clusters (5 control, 5 intervention) recruited 163 public health nurses in Taiwan to the trial. After pre-tests for baseline measurements, public health nurses in intervention centres received an educational intervention of four half-day workshops. Post-tests for both groups were conducted after the intervention. Two-way repeated measures analysis of variance was performed to evaluate the effect of the intervention on target outcomes. Results: A total of 161 participants completed the pre- and post-intervention measurements. This was almost a 99% response rate. Results revealed that 97% of those in the experimental group were satisfied with the programme. There were statistically significant differences between the two groups in knowledge (p = 0.001), confidence in case management skills (p = 0.001), preparedness for case manager role activities (p = 0.001), self-reported frequency in using skills (p = 0.001), and role activities (p = 0.004). Conclusion: Collaboration between academic and clinical nurses is an effective strategy to prepare nurses for rapidly-changing roles.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.