957 resultados para modified simulated body fluid (m-SBF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strength decrease in magnesium implants was studied in vitro and in vivo, with and without a protective plasmaelectrolytic coating. In vivo, degradation was examined by implanting rectangular plates on top of the nasal bone of miniature pigs. The presence of gas pockets in the soft tissue surrounding the implants was evaluated with intermediate X-rays and computed X-ray tomography scans before euthanasia. After 12 and 24weeks of in vivo degradation, the large rectangular plates were removed and mechanically tested in three-point bending. In vitro, identical plates were immersed in simulated body fluid for 4, 8 and 12weeks. In vitro and in vivo results showed that onset of gas release can be delayed by the plasmaelectrolytic coating. Mass loss and strength retention during in vivo degradation is about four times slower than during in vitro degradation for the chosen test conditions. Despite the slow degradation of the investigated WE43 alloy, the occurrence of gas pockets could not be completely avoided. Nevertheless, uniformity of degradation and reliable strength retention make this alloy a prime candidate for the use of magnesium in cranio-maxillofacial surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg alloys are attractive materials for medical devices. The main limitation is that they are prone to corrosion. A low toxicity surface coating that enables uniform, controlled corrosion at a desired rate (this usually means it must offer barrier functions for a limited time period) is desirable. Phosphate-based ionic liquids (ILs) are known to induce a coating that can reduce the corrosion rate of Mg alloys, Furthermore, some ILs are known to be biocompatible and therefore, controlling the corrosion behaviour of an Mg alloy and its surface biocompatibility can be achieved through adding an appropriate low toxic IL surface layer to the substrate. In this study, we have evaluated the cytotoxicity of three phosphate-based ILs to primary human coronary artery endothelial cells. Among them, tributyl(methyl)-phosphonium diphenylphosphate (P1,4,4,4dpp) shows the lowest cytotoxicity. Therefore, further work was aimed at developing an appropriate treatment method to produce a homogeneous and passive surface coating based on P1,4,4,4dpp IL, with the focus on investigating the effect of treatment time. The results showed that that the formation of IL coating on AZ31 has proceeded progressively, and treatment time plays an important role. An IL treatment at 100 °C with an extended treatment time of 5 h significantly enhanced corrosion resistance of the AZ31 alloy in simulated body fluid. Additionally, the corrosion morphology was uniform and there was no evidence of "localized pitting corrosion" observed. Such a performance makes this ionic liquid coating as a potential surface coating biodegradable Mg-based implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two common methods have been used to evaluate the in vitro bioactivity of bioceramics for the application of bone repair. One is to evaluate the ability of apatite formation by soaking ceramics in simulated body fluids (SBF); the other method is to evaluate the effect of ceramics on osteogenic differentiation using cell experiments. Both methods have their own drawbacks in evaluating the in vitro bioactivity of bioceramics. In this commentary paper we review the application of both methods in bioactivity of bioceramics and conclude that (i) SBF method is an efficient method to investigate the in vitro bioactivity of silicate-based bioceramics, (ii) cellular bioactivity of bioceramics should be investigated by evaluating their stimulatory ability using standard bioceramics as controls; and (iii) the combination of these two methods to evaluate the in vitro bioactivity of bioceramics can improve the screening efficiency for the selection of bioactive ceramics for bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.