879 resultados para model predictive control approach


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main challenges in Software Engineering is to cope with the transition from an industry based on software as a product to software as a service. The field of Software Engineering should provide the necessary methods and tools to develop and deploy new cost-efficient and scalable digital services. In this thesis, we focus on deployment platforms to ensure cost-efficient scalability of multi-tier web applications and on-demand video transcoding service for different types of load conditions. Infrastructure as a Service (IaaS) clouds provide Virtual Machines (VMs) under the pay-per-use business model. Dynamically provisioning VMs on demand allows service providers to cope with fluctuations on the number of service users. However, VM provisioning must be done carefully, because over-provisioning results in an increased operational cost, while underprovisioning leads to a subpar service. Therefore, our main focus in this thesis is on cost-efficient VM provisioning for multi-tier web applications and on-demand video transcoding. Moreover, to prevent provisioned VMs from becoming overloaded, we augment VM provisioning with an admission control mechanism. Similarly, to ensure efficient use of provisioned VMs, web applications on the under-utilized VMs are consolidated periodically. Thus, the main problem that we address is cost-efficient VM provisioning augmented with server consolidation and admission control on the provisioned VMs. We seek solutions for two types of applications: multi-tier web applications that follow the request-response paradigm and on-demand video transcoding that is based on video streams with soft realtime constraints. Our first contribution is a cost-efficient VM provisioning approach for multi-tier web applications. The proposed approach comprises two subapproaches: a reactive VM provisioning approach called ARVUE and a hybrid reactive-proactive VM provisioning approach called Cost-efficient Resource Allocation for Multiple web applications with Proactive scaling. Our second contribution is a prediction-based VM provisioning approach for on-demand video transcoding in the cloud. Moreover, to prevent virtualized servers from becoming overloaded, the proposed VM provisioning approaches are augmented with admission control approaches. Therefore, our third contribution is a session-based admission control approach for multi-tier web applications called adaptive Admission Control for Virtualized Application Servers. Similarly, the fourth contribution in this thesis is a stream-based admission control and scheduling approach for on-demand video transcoding called Stream-Based Admission Control and Scheduling. Our fifth contribution is a computation and storage trade-o strategy for cost-efficient video transcoding in cloud computing. Finally, the sixth and the last contribution is a web application consolidation approach, which uses Ant Colony System to minimize the under-utilization of the virtualized application servers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the difficulty in the insulin dosage selection and the problem of hyper- and hypoglycaemia episodes in type 1 diabetes, dosage-aid systems appear as tremendously helpful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as the large intra-patient variability and food intake. This work addresses the prediction of glycaemia for a given insulin therapy face to parametric and input uncertainty, by means of modal interval analysis. As result, a band containing all possible glucose excursions suffered by the patient for the given uncertainty is obtained. From it, a safer prediction of possible hyper- and hypoglycaemia episodes can be calculated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictive controllers are often only applicable for open-loop stable systems. In this paper two such controllers are designed to operate on open-loop critically stable systems, each of which is used to find the control inputs for the roll control autopilot of a jet fighter aircraft. It is shown how it is quite possible for good predictive control to be achieved on open-loop critically stable systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors compare the performance of two types of controllers one based on the multilayered network and the other based on the single layered CMAC network (cerebellar model articulator controller). The neurons (information processing units) in the multi-layered network use Gaussian activation functions. The control scheme which is considered is a predictive control algorithm, along the lines used by Willis et al. (1991), Kambhampati and Warwick (1991). The process selected as a test bed is a continuous stirred tank reactor. The reaction taking place is an irreversible exothermic reaction in a constant volume reactor cooled by a single coolant stream. This reactor is a simplified version of the first tank in the two tank system given by Henson and Seborg (1989).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory