987 resultados para mathematics computing
ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
The Street Computing workshop, held in conjunction with OZCHI 2009, solicits papers discussing new research directions, early research results, works-in-progress and critical surveys of prior research work in the areas of ubiquitous computing and interaction design for urban environments. Urban spaces have unique characteristics. Typically, they are densely populated, buzzing with life twenty-four hours a day, seven days a week. These traits afford many opportunities, but they also present many challenges: traffic jams, smog and pollution, stress placed on public services, and more. Computing technology, particularly the kind that can be placed in the hands of citizens, holds much promise in combating some of these challenges. Yet, computation is not merely a tool for overcoming challenges; rather, when embedded appropriately in our everyday lives, it becomes a tool of opportunity, for shaping how our cities evolve, for enabling us to interact with our city and its people in new ways, and for uncovering useful, but hidden relationships and correlations between elements of the city. The increasing availability of an urban computing infrastructure has lead to new and exciting ways inhabitants can interact with their city. This includes interaction with a wide range of services (e.g. public transport, public services), conceptual representations of the city (e.g. local weather and traffic conditions), the availability of a variety of shared and personal displays (e.g. public, ambient, mobile) and the use of different interaction modes (e.g. tangible, gesture-based, token-based). This workshop solicits papers that address the above themes in some way. We encourage researchers to submit work that deals with challenges and possibilities that the availability of urban computing infrastructure such as sensors and middleware for sensor networks pose. This includes new and innovative ways of interacting with and within urban environments; user experience design and participatory design approaches for urban environments; social aspects of urban computing; and other related areas.
Resumo:
This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building. This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.
Resumo:
Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]
Resumo:
In this chapter we tackle increasingly sensitive questions in mathematics education, those that have polarized the community into distinct schools of thought as well as impacted reform efforts.
Resumo:
Over the past decade, Thai schools have been encouraged by the Thai Ministry of Education to introduce more student-centred pedagogies such as cooperative learning into their classrooms (Carter, 2006). However, prior research has indicated that the implementation of cooperative learning into Thai schools has been confounded by cultural traditions endemic within Thai schools (Deveney, 2005). The purpose of the study was to investigate how 32 Grade 3 and 32 Grade 4 students enrolled in a Thai school engaged with cooperative learning in mathematics classrooms after they had been taught cooperative learning strategies and skills. These strategies and skills were derived from a conceptual framework that was the outcome of an analysis and synthesis of social learning, behaviourist and socio-cognitive theories found in the research literature. The intervention began with a two week program during which the students were introduced to and engaged in practicing a set of cooperative learning strategies and skills (3 times a week). Then during the next four weeks (3 times a week), these cooperative learning strategies and skills were applied in the contexts of two units of mathematics lessons. A survey of student attitudes with respect to their engagement in cooperative learning was conducted at the conclusion of the six-week intervention. The results from the analysis of the survey data were triangulated with the results derived from the analysis of data from classroom observations and teacher interviews. The analysis of data identified four complementary processes that need to be considered by Thai teachers attempting to implement cooperative learning into their mathematics classrooms. The paper concludes with a set of criteria derived from the results of the study to guide Thai teachers intending to implement cooperative learning strategies and skills in their classrooms.
Resumo:
Miller’s algorithm for computing pairings involves perform- ing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields F pk/d , and by elements in the base field Fp . We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multiplications for an optimal number of iterations. Importantly, we show that our technique can be easily integrated into traditional pairing algorithms; implementers can exploit the computational savings herein by applying only minor changes to existing pairing code.
Resumo:
This paper reports on students’ ability to decode mathematical graphics. The findings were: (a) some items showed an insignificant improvement over time; (b) success involves identifying critical perceptual elements in the graphic and incorporating these elements into a solution strategy; and (c) the optimal strategy capitalises on how information is encoded in the graphic. Implications include a need for teachers to be proactive in supporting students’ to develop their graphical knowledge and an awareness that knowledge varies substantially across students.
Resumo:
We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks.