881 resultados para low carbon economy.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.
Resumo:
Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.
Resumo:
The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.
Resumo:
Strenx® 960 MC is a direct quenched type of Ultra High Strength Steel (UHSS) with low carbon content. Although this material combines high strength and good ductility, it is highly sensitive towards fabrication processes. The presence of stress concentration due to structural discontinuity or notch will highlight the role of these fabrication effects on the deformation capacity of the material. Due to this, a series of tensile tests are done on both pure base material (BM) and when it has been subjected to Heat Input (HI) and Cold Forming (CF). The surface of the material was dressed by laser beam with a certain speed to study the effect of HI while the CF is done by bending the specimen to a certain angle prior to tensile test. The generated results illustrate the impact of these processes on the deformation capacity of the material, specially, when the material has HI experience due to welding or similar processes. In order to compare the results with those of numerical simulation, LS-DYNA explicit commercial package has been utilized. The generated results show an acceptable agreement between experimental and numerical simulation outcomes.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.
Resumo:
Cette note présente des résultats de deux importants sondages menés en parallèle dans les deux pays. Au Canada, nos données sont tirées du plus récent Canadian Survey on Energy and the Environment (CSEE, Lachapelle et al. 2015) et aux États-Unis, nous rapportons les résultats du National Survey on Energy and the Environment (NSEE). Réalisés au mois de septembre 2015, ces deux sondages ont soumis les mêmes questions à des échantillons représentatifs des populations du Canada et des États-Unis.
Resumo:
Objetivo: Determinar el nivel de riesgo de la exposición por fracción respirable a polvo de carbón y sílice cristalina y la prevalencia de neumoconiosis en trabajadores de minas de socavón del departamento de Cundinamarca. Métodos: estudio de corte transversal, en grupos de exposición similar (GES) en las minas seleccionadas, el tamaño muestral fue constituido por 11 empresas y 215 trabajadores en donde se realizó un muestreo ambiental para medir los niveles de polvo de carbón y sílice cristalina. Resultados: La edad promedio del grupo fue de 46±9,5 años y género masculino (97,2%), se encontró una asociación significativa entre polvo de carbón y neumoconiosis (p =0,050) y no fue significativa con exposición a sílice cristalina (p = 0,537). El modelo de regresión logística mostró asociación significativa con la escala de nivel de riesgo de carbón medio (OR=10.4, IC 95%:1.50, 71.41, p=0,02), ajustando con variables significativas como: tamaño de la empresa mediana (OR = 2,67, IC 95%:1.07, 6.66, p=0,04), antigüedad mayor o igual a 30 años (OR = 7,186, IC 95%:2.98, 17.29, p=0,001) y habito tabáquico por más de un año (OR = 4,437, IC 95%:2.06, 9.55, p=0,001) para sílice cristalina no hubo asociación en el modelo multivariado. Conclusión: El riesgo de exposición a carbón de nivel medio está relacionado con la prevalencia de neumoconiosis y otros factores adicionales como tamaño de la empresa mediana, antigüedad mayor o igual a 30 años y habito tabáquico por más de un año para los trabajadores de minería de socavón en Cundinamarca. Para los niveles de sílice cristalina no se encontró asociación significativa.
Resumo:
La presente investigación tiene como objetivo principal determinar el papel de la estrategia colombiana de desarrollo bajo en carbono en el mercado de bonos de carbono en Colombia. Esto con el fin de demostrar que las acciones nacionalmente apropiadas de mitigación NAMAS son un mecanismo de mitigación y puede no tener una incidencia en la oferta ni tampoco en la demanda del mercado de bonos de carbono en Colombia. Esta investigación se llevará a cabo por medio de un estudio de caso con un enfoque institucionalista. Se utilizará el método de investigación cualitativo, ya que se intenta medir las cualidades de la estrategia colombiana de desarrollo bajo en carbono mediante un análisis documental, teniendo como referencia las fuentes primarias; el Conpes 3700 de 2011, entrevistas a expertos del Ministerio de Ambiente y Desarrollo Sostenible, Fundación Natura, ConTREEbute, Área Metropolitana del Valle de Aburra, y fuentes secundarias, entre otras.
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
Rapid urbanisation in China has resulted in great demands for energy, resources and pressure on the environment. The progress in China's development is considered in the context of energy efficiency in the built environment, including policy, technology and implementation. The key research challenges and opportunities are identified for delivering a low carbon built environment. The barriers include the existing traditional sequential design process, the lack of integrated approaches, and insufficient socio-technical knowledge. A proposed conceptual systemic model of an integrated approach identifies research opportunities. The organisation of research activities should be initiated, operated, and managed in a collaborative way among policy makers, professionals, researchers and stakeholders. More emphasis is needed on integrating social, economic and environmental impacts in the short, medium and long terms. An ideal opportunity exists for China to develop its own expertise, not merely in a technical sense but in terms of vision and intellectual leadership in order to flourish in global collaborations.
Resumo:
Gaining public acceptance is one of the main issues with large-scale low-carbon projects such as hydropower development. It has been recommended by the World Commission on Dams that to gain public acceptance, publicinvolvement is necessary in the decision-making process (WCD, 2000). As financially-significant actors in the planning and implementation of large-scale hydropowerprojects in developing country contexts, the paper examines the ways in which publicinvolvement may be influenced by international financial institutions. Using the casestudy of the NamTheun2HydropowerProject in Laos, the paper analyses how publicinvolvement facilitated by the Asian Development Bank had a bearing on procedural and distributional justice. The paper analyses the extent of publicparticipation and the assessment of full social and environmental costs of the project in the Cost-Benefit Analysis conducted during the projectappraisal stage. It is argued that while efforts were made to involve the public, there were several factors that influenced procedural and distributional justice: the late contribution of the Asian Development Bank in the projectappraisal stage; and the issue of non-market values and discount rate to calculate the full social and environmental costs.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
This chapter aims to provide an overview of building simulation in a theoretical and practical context. The following sections demonstrate the importance of simulation programs at a time when society is shifting towards a low carbon future and the practice of sustainable design becomes mandatory. The initial sections acquaint the reader with basic terminology and comment on the capabilities and categories of simulation tools before discussing the historical development of programs. The main body of the chapter considers the primary benefits and users of simulation programs, looks at the role of simulation in the construction process and examines the validity and interpretation of simulation results. The latter half of the chapter looks at program selection and discusses software capability, product characteristics, input data and output formats. The inclusion of a case study demonstrates the simulation procedure and key concepts. Finally, the chapter closes with a sight into the future, commenting on the development of simulation capability, user interfaces and how simulation will continue to empower building professionals as society faces new challenges in a rapidly changing landscape.
Resumo:
Daylighting systems can offer energy savings primarily by reducing electric lighting usage. Accurate predictive models of daylighting system performances are crucial for effective design and implementation of this renewable energy technology. A comparative study of predictive methods was performed and the use of a commercial raytracing software program was validated as a method of predicting light pipe performance. Raytracing simulation was shown to more accurately predict transmission effi ciency than existing analytical methods.