962 resultados para low bandwidth communication
Resumo:
Since some years, mobile technologies in healthcare (mHealth) stand for the transformational force to improve health issues in low- and middle-income countries (LMICs). Although several studies have identified the prevailing issue of inconsistent evidence and new evaluation frameworks have been proposed, few have explored the role of entrepreneurship to create disruptive change in a traditionally conservative sector. I argue that improving the effectiveness of mHealth entrepreneurs might increase the adoption of mHealth solutions. Thus, this study aims at proposing a managerial model for the analysis of mHealth solutions from the entrepreneurial perspective in the context of LMICs. I identified the Khoja–Durrani–Scott (KDS) framework as theoretical basis for the managerial model, due to its explicit focus on the context of LMICs. In the subsequent exploratory research I, first, used semi-structured interviews with five specialists in mHealth, local healthcare systems and investment to identify necessary adaptations to the model. The findings of the interviews proposed that especially the economic theme had to be clarified and an additional entrepreneurial theme was necessary. Additionally, an evaluation questionnaire was proposed. In the second phase, I applied the questionnaire to five start-ups, operating in Brazil and Tanzania, and conducted semi-structured interviews with the entrepreneurs to gain practical insights for the theoretical development. Three of five entrepreneurs perceived that the results correlated with the entrepreneurs' expectations of the strengths and weaknesses of the start-ups. Main shortcomings of the model related to the ambiguity of some questions. In addition to the findings for the model, the results of the scores were analyzed. The analysis suggested that across the participating mHealth start-ups the ‘behavioral and socio-technical’ outcomes were the strongest and the ‘policy’ outcomes were the weakest themes. The managerial model integrates several perspectives, structured around the entrepreneur. In order to validate the model, future research may link the development of a start-up with the evolution of the scores in longitudinal case studies or large-scale tests.
Resumo:
This thesis proposes the specification and performance analysis of a real-time communication mechanism for IEEE 802.11/11e standard. This approach is called Group Sequential Communication (GSC). The GSC has a better performance for dealing with small data packets when compared to the HCCA mechanism by adopting a decentralized medium access control using a publish/subscribe communication scheme. The main objective of the thesis is the HCCA overhead reduction of the Polling, ACK and QoS Null frames exchanged between the Hybrid Coordinator and the polled stations. The GSC eliminates the polling scheme used by HCCA scheduling algorithm by using a Virtual Token Passing procedure among members of the real-time group to whom a high-priority and sequential access to communication medium is granted. In order to improve the reliability of the mechanism proposed into a noisy channel, it is presented an error recovery scheme called second chance algorithm. This scheme is based on block acknowledgment strategy where there is a possibility of retransmitting when missing real-time messages. Thus, the GSC mechanism maintains the real-time traffic across many IEEE 802.11/11e devices, optimized bandwidth usage and minimal delay variation for data packets in the wireless network. For validation purpose of the communication scheme, the GSC and HCCA mechanisms have been implemented in network simulation software developed in C/C++ and their performance results were compared. The experiments show the efficiency of the GSC mechanism, especially in industrial communication scenarios.
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
The microstrip antennas are largely used in wireless communication systems due to their low cost, weight, less complex construction and manufacturing, in addition to its versatility. UWB systems have emerged as an alternative to wireless communications over short distances because they offer of higher capacity and lower multipath distortion than other systems with the same purpose. Combining the advantages of microstrip antennas to the characteristics of UWB, it is possible to develop more and more smaller devices, with diverse geometries to operate satisfactorily in these systems. This paper aims to propose alternatives to microstrip antennas for UWB systems operate in the range between 3.1 and 10.6 GHz, with a patch on circular ring. Some techniques are analyzed and employed to increase the bandwidth of proposed antenna: the insertion of a parasitic elements and a rectangular slit in the displaced ground plane. For this, key issues are presented as the basic principles of UWB systems, the fundamental theory of antennas and microstrip antennas. The simulations and experimental characterization of constructed antennas are presented, as well as analysis of parameters such as bandwidth and radiation pattern
Resumo:
The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures
Resumo:
This study evaluates the influence of different cartographic representations of in-car navigation systems on visual demand, subjective preference, and navigational error. It takes into account the type and complexity of the representation, maneuvering complexity, road layout, and driver gender. A group of 28 drivers (14 male and 14 female) participated in this experiment which was performed in a low-cost driving simulator. The tests were performed on a limited number of instances for each type of representation, and their purpose was to carry out a preliminary assessment and provide future avenues for further studies. Data collected for the visual demand study were analyzed using non-parametric statistical analyses. Results confirmed previous research that showed that different levels of design complexity significantly influence visual demand. Non-grid-like road networks, for example, influence significantly visual demand and navigational error. An analysis of simple maneuvers on a grid-like road network showed that static and blinking arrows did not present significant differences. From the set of representations analyzed to assess visual demand, both arrows were equally efficient. From a gender perspective, women seem to took at the display more than men, but this factor was not significant. With respect to subjective preferences, drivers prefer representations with mimetic landmarks when they perform straight-ahead tasks. For maneuvering tasks, landmarks in a perspective model created higher visual demands.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A CMOS low-voltage, wide-swing continuous-time current amplifier is presented. Exhibiting an open-loop architecture, the circuit is composed of transresistance and transconductance stages built upon triode-operating transistors. In addition to an extended dynamic range, the current gain can be programmed within good accuracy by a rapport involving only transistor geometries and tuning biases. Low temperature-drift on gain setting is then expected.In accordance with a 0.35 mum n-well CMOS fabrication process and a single 1.1 V-supply, a balanced current-amplifier is designed for a programmable gain-range of 6 - 34 dB and optimized with respect to dynamic range. Simulated results from PSPICE and Bsim3v3 models indicate, for a 100 muA(pp)-output current, a THD of 0.96 and 1.87% at 1 KHz and 100 KHz, respectively. Input noise is 120 pArootHz @ 10 Hz, with S/N = 63.2 dB @ 1%-THD. At maximum gain, total quiescent consumption is 334 muW. Measurements from a prototyped amplifier reveal a gain-interval of 4.8-33.1 dB and a maximum current swing of 120 muA(pp). The current-amplifier bandwidth is above 1 MHz.
Resumo:
A linearly tunable low-voltage CMOS transconductor featuring a new adaptative-bias mechanism that considerably improves the stability of the processed-signal common,mode voltage over the tuning range, critical for very-low voltage applications, is introduced. It embeds a feedback loop that holds input devices on triode region while boosting the output resistance. Analysis of the integrator frequency response gives an insight into the location of secondary poles and zeros as function of design parameters. A third-order low-pass Cauer filter employing the proposed transconductor was designed and integrated on a 0.8-mum n-well CMOS standard process. For a 1.8-V supply, filter characterization revealed f(p) = 0.93 MHz, f(s) = 1.82 MHz, A(min) = 44.08, dB, and A(max) = 0.64 dB at nominal tuning. Mined by a de voltage V-TUNE, the filter bandwidth was linearly adjusted at a rate of 11.48 kHz/mV over nearly one frequency decade. A maximum 13-mV deviation on the common-mode voltage at the filter output was measured over the interval 25 mV less than or equal to V-TUNE less than or equal to 200 mV. For V-out = 300 mV(pp) and V-TUNE = 100 mV, THD was -55.4 dB. Noise spectral density was 0.84 muV/Hz(1/2) @1 kHz and S/N = 41 dB @ V-out = 300 mV(pp) and 1-MHz bandwidth. Idle power consumption was 1.73 mW @V-TUNE = 100 mV. A tradeoff between dynamic range, bandwidth, power consumption, and chip area has then been achieved.
Resumo:
The effect of pheromones and their chemical analogues in honeybee alarm behaviors was studied in observation boxes. Defensive behaviors, as follows: a) attraction to scent source, b) elevation of wings in 'V', c) abdomen elevation, d) abdomen elevation and pumping and e) first leg pair elevation had been temporarily registered when the following compounds were presented: isoamyl alcohol, octyl alcohol, benzyl alcohol, n-butyl acetate, n-octyl acetate, isopentyl acetate, benzyl acetate and 2-heptanone. The results were as follows: 1. the bees elicited some characteristic behaviors when chemical alarm messages were presented, 2. agression (stinging) was not completed with any compound tested, probably because there was not a target (visual stimulus), 3. in all situations the attraction to scent source was low, 4. all the behaviors were elicited in a temporarily different way, 5. the compounds that elicited stronger responses and a greater number of the investigated behaviors were: isopentyl acetate, 2-heptanone, octyl acetate and n-octyl alcohol. In all situations, the first behavior response (and the most intense one) was the elevation and pumping the abdomen. This suggests that the chemical message was promptly recognized and then transmitted to each worker. So, the results obtained in the present work, suggest that chemical alarm messages may be recognized by different mechanisms of neural integration.
Resumo:
A new topology for a LVLP variable-gain CMOS amplifier is presented. Input- and load-stage are built around triode-transconductors so that voltage-gain is fully defined by a linear relationship involving only device-geometries and biases. Excellent gain-accuracy, temperature-insensitivity; and wide range of programmability, are thus achieved. Moreover, adaptative biasing improves the common-mode voltage stability upon gain-adjusting. As an example, a 0-40dB programmablegain audio-amplifier is designed. Its performance is supported by a range of simulations. For VDD=1.8V and 20dB-nominal gain, one has Av=19.97dB, f3db=770KHz and quiescent dissipation of 378μW. Over temperatures from -25°C to 125°C, the 0. ldB-bandwidth is 52KHz. Dynamic-range is optimized to 57.2dB and 42.6dB for gains of 20dB and 40dB, respectively. THD figures correspond to -60.6dB@Vout= 1Vpp and -79.7dB@Vout= 0.5 Vpp. A nearly constant bandwidth for different gains is also attained.
Resumo:
A CMOS low-voltage, wide-band continuous-time current amplifier is presented. Based on an open-loop topology, the circuit is composed by transresistance and transconductance stages built around triode-operating transistors. In addition to an extended dynamic range, the amplifier gain can be programmed within good accuracy by the rapport between the aspect-ratio of such transistors and tuning biases Vxand Vy. A balanced current-amplifier according to a single I. IV-supply and a 0.35μm fabrication process is designed. Simulated results from PSPiCE and Bsm3v3 models indicate a programmable gain within the range 20-34dB and a minimum break-frequency of IMHz @CL=IpF. For a 200 μApp-level, THD is 0.8% and 0.9% at IKHz and 100KHz, respectively. Input noise is 405pA√Hz @20dB-gain, which gives a SNR of 66dB @1MHz-bandwidth. Maximum quiescent power consumption is 56μ W. © 2002 IEEE.
Resumo:
Modern agriculture demands investments in technology that allows the farmers to improve productivity and quality of their products, aiming to establish themselves in a competitive market. However, the high costs of acquiring and maintaining such technology may be an inhibiting factor to its spread and acceptance, mainly to a large number of small grain Brazilian farmers, who need low cost innovative technological solutions, suitable for their financial reality. Starting from this premise, this paper presents the development of a low cost prototype for monitoring the temperature and humidity of grains stored in silos, and the economic implications of cost/benefit ratio of innovative applications of low cost technology in the process of thermometry of grains. The prototype was made of two electronic units, one for acquisition and another one for data reception, as well as software, which offered the farmers more precise information for the control of aeration. The data communication between the electronic units and the software was reliable and both were developed using low cost electronic components and free software tools. The developed system was considered as potentially viable to small grain Brazilian farmers; it can be used in any type of small silos. It provided reduction of costs of installation and maintenance and also offered an easy expansion system; besides the low cost of development when compared to similar products available in the Brazilian market.
Resumo:
The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3. kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24. h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5. g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12. h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6. h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3. h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6. kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3. h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows. © 2013 American Dairy Science Association.