797 resultados para learning classifier systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning Management Systems (LMSs) have become a larger part of teaching and learning in the modern world. Therefore has Moodle, a free and open source e-learning tool surfaced and gained a lot of attraction and downloads. A purpose of this study has been to develop a new local plugin in Moodle with guidelines from Magnus Eriksson and Tsedey Terefe. A purpose for this project has also been to build a plugin which has the functions Date rollover and Individual date adjustment. Mid Sweden University (Miun) stated that WebCT/Blackboard was in use before Moodle and some other LMSs and the dissatisfaction with WebCT/Blackboard was rife, however some teachers liked it. Therefore WebCT/Blackboard was abandoned and Moodle was embraced. The methods of gaining information has generally been web based sources and three interviews, likewise called user tests. Programs and other aids that have been used include but are not limited to: Google Drive, LTI Provider, Moodle, Moodle documentation, Notepad++, PHP and XAMPP. The plugin has been implemented as a local plugin. The result has shown that the coded plugin, Date adjustment tools could be improved and that it was changed. In the plugin, support for old American English dates were added and the code for using the two functions “Date rollover” and “Individual date adjustment” were rewritten to not interfere with one another. A conclusion to draw from the result is that the plugin has been improved from Terefe’s implementation, although more work can be made with the plugin Date adjustment tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Um die Nutzung digitaler Medien in der Lehre zu erleichtern, hat die Hochschule Ostwestfalen-Lippe ein Konzept entwickelt, mit dem Lehrende durch wissenschaftliche und studentische „eTutoren“ und Studierende durch studentische „eMentoren“ bei der Nutzung digitaler Medien im Lehr-/Lernprozess unterstützt werden. Ein zentraler Bestandteil des Modells ist die Nutzung des Learning-Management Systems ILIAS. Im folgenden Beitrag werden auf der Basis einiger grundsätzlicher Überlegungen zur Veränderung der Hochschullehre durch digitale Medien (1) zunächst die Konzepte des eTutoring und eMentoring kurz vorgestellt (2) und dann erläutert, wie das 5-Stufen-Modell für Online-Kurse von Gilly Salmon (3) für die konkreten Bedingungen an der Hochschule OWL angepasst wurde und von den eTutoren und eMentoren zur Unterstützung von Lehrenden und Studierenden genutzt wird (4). Der Beitrag schließt mit einem Fazit der bisherigen Erfahrungen (5).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a research which main purpose was identifying and characterizing the use of Communication Technologies by Portuguese Public Higher Education Institutions to support learning activities. An analysis model was created and used to develop a nationwide online survey used to collect data from students, teachers and institutional managers. The results show that institutional policies and resources are in place and being used to support learning; learning management systems and interpersonal communication technologies are intensely used and widely adopted; and that there are gender differences as far as the students' use of Communication Technologies is concerned. The results of this project provide a useful insight on the use of Communication Technologies by Portuguese Public Higher Education Institutions and give valuable information for ongoing decision making processes regarding the institutional adoption and development of learning models that take advantage of these technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, massive open online courses (MOOCs) have been offering a new online approach in the field of distance learning and online education. A typical MOOC course consists of video lectures, reading material and easily accessible tests for students. For a computer programming course, it is important to provide interactive, dynamic, online coding exercises and more complex programming assignments for learners. It is expedient for the students to receive prompt feedback on their coding submissions. Although MOOC automated programme evaluation subsystem is capable of assessing source programme files that are in learning management systems, in MOOC systems there is a grader that is responsible for evaluating students’ assignments with the result that course staff would be required to assess thousands of programmes submitted by the participants of the course without the benefit of an automatic grader. This paper presents a new concept for grading programming submissions of students and improved techniques based on the Java unit testing framework that enables automatic grading of code chunks. Some examples are also given such as the creation of unique exercises by dynamically generating the parameters of the assignment in a MOOC programming course combined with the kind of coding style recognition to teach coding standards.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a local production system (LPS), besides external economies, the interaction, cooperation, and learning are indicated by the literature as complementary ways of enhancing the LPS's competitiveness and gains. In Brazil, the greater part of LPSs, mostly composed by small enterprises, displays incipient relationships and low levels of interaction and cooperation among their actors. The size of the participating enterprises itself for specificities that engender organizational constraints, which, in turn, can have a considerable impact on their relationships and learning dynamics. For that reason, it is the purpose of this article to present an analysis of interaction, cooperation, and learning relationships among several types of actors pertaining to an LPS in the farming equipment and machinery sector, bearing in mind the specificities of small enterprises. To this end, the fieldwork carried out in this study aimed at: (i) investigating external and internal knowledge sources conducive to learning and (ii) identifying and analyzing motivating and inhibiting factors related to specificities of small enterprises in order to bring the LPS members closer together and increase their cooperation and interaction. Empirical evidence shows that internal aspects of the enterprises, related to management and infrastructure, can have a strong bearing on their joint actions, interaction and learning processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A organização automática de mensagens de correio electrónico é um desafio actual na área da aprendizagem automática. O número excessivo de mensagens afecta cada vez mais utilizadores, especialmente os que usam o correio electrónico como ferramenta de comunicação e trabalho. Esta tese aborda o problema da organização automática de mensagens de correio electrónico propondo uma solução que tem como objectivo a etiquetagem automática de mensagens. A etiquetagem automática é feita com recurso às pastas de correio electrónico anteriormente criadas pelos utilizadores, tratando-as como etiquetas, e à sugestão de múltiplas etiquetas para cada mensagem (top-N). São estudadas várias técnicas de aprendizagem e os vários campos que compõe uma mensagem de correio electrónico são analisados de forma a determinar a sua adequação como elementos de classificação. O foco deste trabalho recai sobre os campos textuais (o assunto e o corpo das mensagens), estudando-se diferentes formas de representação, selecção de características e algoritmos de classificação. É ainda efectuada a avaliação dos campos de participantes através de algoritmos de classificação que os representam usando o modelo vectorial ou como um grafo. Os vários campos são combinados para classificação utilizando a técnica de combinação de classificadores Votação por Maioria. Os testes são efectuados com um subconjunto de mensagens de correio electrónico da Enron e um conjunto de dados privados disponibilizados pelo Institute for Systems and Technologies of Information, Control and Communication (INSTICC). Estes conjuntos são analisados de forma a perceber as características dos dados. A avaliação do sistema é realizada através da percentagem de acerto dos classificadores. Os resultados obtidos apresentam melhorias significativas em comparação com os trabalhos relacionados.