860 resultados para laser dual-frequency interferometer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was <5 nM, and that of the MCCD was 0.1 μM. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new method of frequency-shifting for a diode laser is realized. Using a sample-and-hold circuit, the error signal can be held by the circuit during frequency shifting. It can avoid the restraint of locking or even lock-losing caused by the servo circuit when we input a step-up voltage into piezoelectric transition (PZT) to achieve laser frequency-shifting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a sinusoidal phase-modulating laser diode interferometer for measuring small angular displacement. The interferometer is based on a Fabry-Perot plate. It has a simple structure and is insensitive to external disturbance. Sinusoidal phase-modulating interferometry is used for improving the measurement accuracy. A charge-coupled device (CCD) image sensor is used for measuring the distance between the reflected beams from two faces of the Fabry-Perot plate. From the distance, the initial angle of incidence is calculated. Compared with Michelson interferometers and autocollimators, this interferometer has the advantage of compact size and simple structure. The numerical calculation and experimental results verify the usefulness of this novel interferometer. (C) 2004 Society of Photo-Optical Instrumentation Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kilometer scale interferometers for the detection of gravitational waves are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO projects. These interferometers will consist of two Fabry-Perot cavities illuminated by a laser beam which is split in half by a beam splitter. A recycling mirror between the laser and the beam splitter will reflect the light returning from the beam splitter towards the laser back into the interferometer. The positions of the optical components in these interferometers must be controlled to a small fraction of a wavelength of the laser light. Schemes to extract signals necessary to control these optical components have been developed and demonstrated on the tabletop. In the large scale gravitational wave detectors the optical components must be suspended from vibration isolation platforms to achieve the necessary isolation from seismic motion. These suspended components present a new class of problems in controlling the interferometer, but also provide more exacting test of interferometer signal and noise models.

This thesis discusses the first operation of a suspended-mass Fabry-Perot-Michelson interferometer, in which signals carried by the optically recombined beams are used to detect and control all important mirror displacements. This interferometer uses an optical configuration and signal extraction scheme that is planned for the full scale LIGO interferometers with the simplification of the removal of the recycling mirror. A theoretical analysis of the performance that is expected from such an interferometer is presented and the experimental results are shown to be in generally good agreement.