981 resultados para ionic surfactant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying surfactant interaction effects on soil moisture and turf quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrodynamic particle sizes, molar masses and phase transition behavior of various poly(N-isopropylacrylamide) (PNIPAM) polymers as a function of viscosity and phase transition temperatures. The effect of sodium chloride salt and the molar ratio of cationic and anionic polyelectrolytes on the hydrodynamic particle sizes of poly (methacryloxyethyl trimethylammonium chloride) and poly (ethylene oxide)-block-poly (sodium methacrylate) and their complexes were studied. The particle sizes of PNIPAM polymers, and polyelectrolyte complexes measured by AsFlFFF were in agreement with those obtained by dynamic light scattering. The molar masses of PNIPAM polymers obtained by AsFlFFF and size exclusion chromatography agreed also well. In addition, AsFlFFF proved to be a practical technique in thermo responsive behavior studies of polymers at temperatures up to about 50 oC. The suitability of AsFlFFF for biological, biomedical, and pharmaceutical applications was proved, upon studying the lipid-protein/peptide interactions, and the stability of liposomes at different temperatures. AsFlFFF was applied to the studies on the hydrophobic and electrostatic interactions between cytochrome c (a basic peripheral protein) and anionic lipid, and oleic acid, and sodium dodecyl sulphate surfactant. A miniaturized AsFlFFF constructed in this study was exploited in the elucidation of the effect of copper (II), pH, ionic strength, and vortexing on the particle sizes of low-density lipoproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ionic liquids in chemical research has gained considerable interest and activity in recent years. Due to their unique and varied physicochemical properties, in comparison to molecular solvents, the potential applications for ionic liquids are enormous. The use of microwave irradiation, as a powerful dielectric heating technique, in synthetic organic chemistry has been known since 1986. Since then, it has gained significant recognition for its research and application in both academia and industry. The use of either ionic liquids or microwave irradiation in synthetic organic chemistry has been known to afford improved, alternative or complimentary selectivities, in comparison to traditional processes. In this study, the use of ionic liquids as solvents, co-solvents and catalytic media was explored in Friedel-Crafts, deuterolabelling and O-demethylation reactions. Alternative methods for the production of a variety of aromatic ketones using the Friedel-Crafts acylation methodology were investigated using ionic liquid catalyst or ionic liquid acidic additive systems. The disclosed methods, i.e. metal bistriflamides and chloroindate ionic liquids systems, possessed good catalytic activity in the synthesis of typical benzophenones. These catalytic systems were also recyclable. Microwave irradiation was found to be useful in the synthesis of various polyhydroxydeoxybenzoins and arylpropanones as synthetic precursors to naturally occurring or potentially bioactive compounds. Under optimized condition, the reaction occurred in only four minutes using systems such as [bmim][NTf2]/HNTf2 and [bmim][BF4]/BF3·OEt2. Naturally occurring polyphenols, such as isoflavones, can possess various types of biological or pharmacological activity. In particular, some are noted for their beneficial effects on human health. Isotopically labelled analogues of polyphenols are valuable as analytical standards in the quantification of these compounds from biological matrices. A new strategy for deuterolabelling of polyphenols was developed using ionic liquids as co-solvents and 35% DCl/D2O, as a cheap deuterium source, under microwave irradiation. Under these conditions, perdeuterated compounds were achieved in short reaction times, in high isotopic purity and in excellent yields. An O-demethylation reaction was developed, using an ionic liquid reaction medium with BBr3 for the deprotection of a variety methyl protected polyphenolic compounds, such as isoflavons and lignans. This deprotection procedure was found to be very practical as the reaction occurred under mild reaction conditions and in short reaction times. The isolation and purification steps were particularly straightforward and high yielding, in comparison to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flourite-type nanocrystalline Ce0.9Fe0.1O2-delta and Ce0.89Fe0.1Pd0.01O2-delta solid solutions have been synthesized by solution combustion method,'.which show higher oxygen storage/release property (OSC) compared to CeO2 and Ce0.8Zr0.2O2. Temperature programmed reduction an XPS study reveal that the presence of Pd ion in Ce0.9Fe0.1O2-delta facilitates complete reduction of Fe3+ to Fe2+ state and partial reduction of Ce4+ to Ce3+ state at.temperatures as low as 105 degrees C compared to 400 degrees C for monometal-ionic Ce0.9Fe0.1O2-delta. Fe3+ ion is reduced to Fe2+ and not to Feo due to favorable redox potential for Ce4+ + Fe2+ -> Ce3+ + Fe3+ reaction. Using first-principles density functional theory calculation we determine M-O (M = Pd, Fe, Ce) bond lengths, and find that bond lengths vary from shorter (2.16 angstrom) to longer (2.9 angstrom) bond distances compared to mean Ce-O bond distance of 2.34 angstrom. for CeO2. Using these results in bond valence analysis, we show that oxygen with bond valences as low as -1.55 are created, leading to activation of lattice oxygen in the bimetal ionic catalyst. Temperatures of CO oxidation and NO reduction by CO/H-2 are lower with the bimetalionic Ce0.89Fe0.1Pd0.01O2-delta catalyst compared to monometal-ionic Ce0.9Fe0.1O2-delta and Ce0.99Pd0.01O2-delta catalysts. From XPS studies of Pd impregnated on CeO2 and Fe2O3 oxides, we show that the synergism leading to low temperature activation of lattice oxygen in bimetal-ionic catalyst Ce0.89Fe0.1Pd0.01O2-delta is due to low-temperature reduction of Pd2+ to Pd-0, followed by Pd-0 + 2Fe(3+) -> Pd2+ + 2Fe(2+), Pd-0 + 2Ce(4+) -> Pd2+ + 2Ce(3+) redox reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable Y-doped BaZrO3 electrolyte film, which showed a good performance in proton-conducting SOFCs, was successfully fabricated using a novel ionic diffusion strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant anion intercalated hydroxy salts of copper and cobalt of the formula M(OH)(2-x)(surf)(x)center dot mH(2)O [M = Cu, Co; surf = dodecyl sulfate. dodecyl benzene sulfonate. and x = 0.5 for Cu and 0.67 for Co] delaminate readily in 1-butanol to give translucent colloidal dispersions that are stable for months. The extent of delamination and the colloidal dispersion observed in these solids is higher than what had been observed for layered double hydroxides. The dispersions yield the corresponding nanoparticulate oxides on solvothermal decomposition. While the copper hydroxy salt forms similar to 300 nm dendrimer-like CuO nanostructures comprising nanorods of similar to 10 nm diameter, the cobalt analogue forms similar to 20 nm superparamagnetic particles of Co3O4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-Manganese dioxide is synthesized in a microemulsion medium by a redox reaction between KMnO4 and MnSO4 in presence of sodium dodecyl sulphate as a surface active agent. The morphology of MnO2 resembles nanopetals, which are spread parallel to the field. The material is further characterized by powder X-ray diffraction, energy dispersive analysis of X-ray, and Brunauer–Emmett–Teller surface area. Supercapacitance property of α-MnO2 nanopetals is studied by cyclic voltammetry and galvanostatic charge–discharge cycling. High values of specific capacitance are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.