335 resultados para integrable, birational, priodic
Resumo:
L'objectiu bàsic d'aquesta investigació es elaborar una proposta de criteris útil per a l'elaboració i revisió de les seqüències de continguts educatius al currículum. Per dur-lo a terme, s'han desenvolupat les tasques següents: - Revisió critica de les diferents aportacions al tema des de la psicologia, l'epis¬temologia i la didàctica. - Elaboració d'un conjunt de criteris, fonamentals i relacionats, per orientar el professorat i els dissenyadors de currículums i materials curriculars en la presa de decisions sobre la manera de presentar i desenvolupar els continguts educatius en els plans d'ensenyament, englobant de manera simultània les dife¬rents variables que intervenen. - Estudi d'un cas en el qual un equip docent d'Educació Primària elabora una seqüència educativa per a l'estudi dels essers vius, i l'experimenta a l'aula, ba¬sant-se en la proposta de criteris realitzada. L'estudi del cas ha cobert un període de quatre anys de treball conjunt de l'investigador i l'equip docent. Hipòtesis de treball: L'establiment d'un conjunt de criteris explícits que orientin l'anàlisi i l'elaboració de seqüències de continguts educatius per part dels equips docents pot ajudar a millorar el disseny i el desenvolupament del currículum als centres. Se suposa que els criteris esmentats: 1. Proporcionaran als docents una millor comprensió dels continguts educatius que ensenyen, de la seva estructura lògica i psicològica i, en conseqüència dels as¬pectes més rellevants per a l'ensenyament. 2. Situaran el professorat en unes millors condicions per elaborar seqüències d'ensenyament fonamentades i progressives. 3. Facilitaran l'adaptació de Is continguts educatius a les capacitats, el conei¬xements i les experiències prèvies de l'alumnat. 4. Afavoriran una presentació dels continguts a l'alumnat més organitzada i relacionada. 5. Comentaran un tractament mes equilibrat i integrat dels diferents tipus de continguts. Conclusions: - Els criteris proposats s'han mostrat útils i coherents per ajudar a analitzar i reconduir les seqüències educatives, mitjançant hipòtesis explícites fonamentades que els donin més coherència. - El tipus d'intervenció realitzada i la metodologia utilitzada en l'estudi del cas, basades a l'observació participant s'han mostrat útils per tractar els pro¬blemes plantejats. - Els resultats del treball realitzat tenen repercussions en la formació inicial i permanent del professorat i en el disseny dels currículums i materials curri¬culars. D'una altra banda, la seva generalització faria necessari la seva rèplica en altres etapes i àrees curriculars.
Resumo:
This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.
Resumo:
We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.
Resumo:
We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.
Resumo:
We solve an initial-boundary problem for the Klein-Gordon equation on the half line using the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas. The approach we present can be also used to solve more complicated boundary value problems for this equation, such as problems posed on time-dependent domains. Furthermore, it can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this respect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon equation.
Resumo:
A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.
Resumo:
This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory.
Resumo:
We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.
Resumo:
This paper extends and clarifies results of Steinsaltz and Evans [Trans. Amer. Math. Soc. 359 (2007) 1285–1234], which found conditions for convergence of a killed one-dimensional diffusion conditioned on survival, to a quasistationary distribution whose density is given by the principal eigenfunction of the generator. Under the assumption that the limit of the killing at infinity differs from the principal eigenvalue we prove that convergence to quasistationarity occurs if and only if the principal eigenfunction is integrable. When the killing at ∞ is larger than the principal eigenvalue, then the eigenfunction is always integrable. When the killing at ∞ is smaller, the eigenfunction is integrable only when the unkilled process is recurrent; otherwise, the process conditioned on survival converges to 0 density on any bounded interval.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
Gamow's explanation of the exponential decay law uses complex 'eigenvalues' and exponentially growing 'eigenfunctions'. This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any wavefunction is given by its expansion in generalized eigenfunctions, we shall answer this question in the most straightforward manner, which at the same time is accessible to graduate students and specialists. Moreover, the presentation can well be used in physics lectures to students.
Resumo:
We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.
Resumo:
We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.