872 resultados para inequitable exchange
Resumo:
New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.
Resumo:
Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.
Resumo:
Three new transition metal complexes using 2-pyrimidineamidoxime (pmadH(2)) as multidentate chelating and/or bridging ligand have been synthesized and characterized. The ligand pmadH(2) has two potential bridging functional groups mu-O and mu-(N-O)] and consequently shows several coordination modes. While a polymeric 1D Cu-II complex Cu(pmadH(2))(2)(NO3)](NO3) (1) was obtained upon treatment of Cu(NO3)(2)center dot 3H(2)O with pmadH(2) at room temperature in the absence of base, a high temperature reaction in the presence of base yielded a tetranuclear Cu-II-complex Cu-4(pmad)(2)(pmadH)(2)(NO3)](NO3)(H2O) (2). One of the Cu-II centers is in a square pyramidal environment while the other three are in a square planar geometry. Reaction of the same ligand with an equimolar mixture of both Cu(NO3)(2)center dot 3H(2)O and NiCl2 center dot 6H(2)O yielded a tetranuclear heterometallic (Cu2Ni2II)-Ni-II complex Cu2Ni2(pmad)(2)(pmadH)(2)Cl-2]center dot H2O (3) containing both square planar (Ni-II) and square pyramidal (Cu-II) metal centers. Complexes 1-3 represent the first examples of polynuclear metal complexes of 2-pyrimidineamidoxime. The analysis of variable temperature magnetic susceptibility data of 2 reveals that both ferromagnetic and antiferromagnetic interactions exist in this complex (J(1) = +10.7 cm(-1) and J(2) = -2.7 cm(-1) with g = 2.1) leading to a resultant ferromagnetic behavior. Complex 3 shows expected antiferromagnetic interaction between two Cu-II centers through -N-O- bridging pathway with J(1) = -3.4 cm(-1) and g = 2.08. DFT calculations have been used to corroborate the magnetic results.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
To understand the molecular basis of gene targeting, we have studied interactions of nucleoprotein filaments comprised of single-stranded DNA and RecA protein with chromatin templates reconstituted from linear duplex DNA and histones. We observed that for the chromatin templates with histone/DNA mass ratios of 0.8 and 1.6, the efficiency of homologous pairing was indistinguishable from that of naked duplex DNA but strand exchange was repressed. In contrast, the chromatin templates with a histone/DNA mass ratio of 9.0 supported neither homologous pairing nor strand exchange. The addition of histone H1, in stoichiometric amounts, to chromatin templates quells homologous pairing. The pairing of chromatin templates with nucleoprotein filaments of RecA protein-single-stranded DNA proceeded without the production of detectable networks of DNA, suggesting that coaggregates are unlikely to be the intermediates in homologous pairing. The application of these observations to strategies for gene targeting and their implications for models of genetic recombination are discussed.
Resumo:
Solid solutions of the formula, A2–xLa2Ti3–xNbxO10(A = K, Rb), exist for the range 0[less-than-or-eq]x[less-than-or-eq]1.0, bridging n= 3 members of the Ruddlesden–Popper series (A2La2Ti3O10) and the Dion–Jacobson series (ALa2Ti2NbO10). For 0[less-than-or-eq]x[less-than-or-eq]0.75, the phases possess body-centred structures characteristic of the Ruddlesden–Popper phases, while the x= 1 members are isostructural with KCa2Nb3O10(A = K) and CsCa2Nb3O10(A = Rb). Protonated derivatives, H2–xLa2Ti3–xNbxO10, which are prepared by ion exchange, retain the structural difference of the parent phases. A difference in the Brønsted acidity of the protonated derivatives revealed by intercalation experiments with organic bases seems to be related to this structural difference.
Resumo:
Multiband Hubbard and Pariser-Parr-Pople calculations have been carried out on mixed donor-acceptor (DA) stacks with doubly degenerate acceptor orbitals and nondegenerate donor orbitals at two-thirds filling. Model exact results for 2, 3, and 4 DA units show that McConnell's prediction of high-spin ground states in these systems is, in general, incorrect. The larger phase space available for the low-spin states leads to their kinetic stabilization in preference to high-spin states. However, for large electron-correlation strengths, the direct exchange dominates over the kinetic exchange resulting in a high-spin ground state
Resumo:
Zinc forms two types of complexes with o-vanillin salicyloylhydrazone. The H-1 and C-13 nmr studies suggest that it coordinates with azomethine nitrogen, the carbonyl oxygen and with one or both of the phenolic oxygens. The H-1-H-1 and H-1 decoupled C-13-C-13 two-dimensional nuclear Overhauser and exchange spectra show that there is an exchange between the two types of complexes.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.