1000 resultados para industrial residues
Resumo:
Tropical countries face special specific problems in implementing sustainable forest management (SFM). In many countries, questions are raised on whether tropical forests should be publicly, commonly or privately owned and managed in order to enhance sustainability. Other debates also focus on whether small-scale enterprises are better positioned than large-scale industrial concessions to reduce poverty and attain sustainable management. In countries where large tracts of forest are state-owned, concessions are viewed as a means of delivering services of public and collective interest through an association of private investment and public regulation. However, the success of an industrial concession model in countries with large forest resource endowment to achieve multiple goals such as sustainable forest management and local/regional development depends on two critical assumptions. First, forest functions and services should be managed and maintained as public goods. In many cases, additional uses - and corresponding rights - can take place alongside logging activities. Industrial concessions can be more efficient than other tenure models (such as community-based forest management and small-scale enterprises) in achieving SFM, add value to raw material and comply with growing environmental norms. This is especially the case in market-remote areas with low population density and poor infrastructure. Secondly, to achieve these different outcomes, any concession system needs to be monitored and regulated, especially in contexts dominated by asymmetrical information between regulating authorities and concessionaires. New institutional responses have recently been put forward in several countries, providing valuable materials to design a renewed policy mix which associates public and private incentives. This paper provides a survey of the experience of forest concessions in several Central African and South American countries. The concession system is examined in order to clarify the issues involved, the problems encountered, and what can be learned from the shared experience of these countries in the last decade. This paper argues that despite a sometimes patchy record, concessions can help promote SFM so long as they are packaged with a certain number of specific measures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl(2)center dot 2H(2)O and (NH(4))(2)SO(4) in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30A degrees C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195A degrees C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100A degrees C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.
Resumo:
The effects of alkaline treatments of the wheat straw with sodium hydroxide were investigated. The optimal condition for extraction of hemicelluloses was found to be with 0.50 mol/l sodium hydroxide at 55C for 2 h. This resulted in the release of 17.3% of hemicellulose (% dry starting material), corresponding to the dissolution of 49.3% of the original hemicellulose. The yields were determined by gravimetric analysis and expressed as a proportion of the starting material. Chemical composition and physico-chemical properties of the samples of hemicelluloses were elucidated by a combination of sugar analyses, Fourier transform infrared (FTIR), and thermal analysis. The results showed that the treatments were very effective on the extraction of hemicelluloses from wheat straw and that the extraction intensity (expressed in terms of alkali concentration) had a great influence on the yield and chemical features of the hemicelluloses. The FTIR analysis revealed typical signal pattern for the hemicellulosic fraction in the 1,200-1,000 cm(-1) region. Bands between 1,166 and 1,000 cm(-1) are typical of xylans.
Resumo:
Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 mu M/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 mu M/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions.
Resumo:
This keynote paper aims at analyzing relevant industrial demands for grinding research. The chosen focus is to understand what are the main research challenges in the extensive industrial use of the process. Since the automotive applications are the most important driving forces for grinding development, the paper starts with an analysis on the main trends in more efficient engines and the changes in their components that will affect the grinding performance. A view from 23 machine tool builders is also presented based on a survey made in interviews and during the EMO and IMTS machine tool shows. Case studies received by the STC G members were used to show how research centers and industries are collaborating. A view from the authors and the final conclusions show hot topics for future grinding research. (C) 2009 CIRP.
Resumo:
Urban solid residues are constituted of food remaining, grass leaves, fruit peelings, paper, cardboard, rubber, plastic, etc. The organic fraction formed represents about 50% during the decomposition yields biogas and leachate, which are sources of pollution. Residue samples were collected from the landfill in different and cells from several ages and the corresponding leachate, both after treatments, were submitted to thermal analysis. Kinetic parameters were determined using Flynn-Wall-Ozawa method. The linear relation between the two kinetic parameters (ln A and E) was verified for organic residue urban`s samples, but not for leachate`s sample. The occurred difference can be attributed to the constituents present in leachate.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
Sao Paulo Research Foundation (FAPESP) in Brazil
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on the characterization of carbide lime (CL) - a by-product of acetylene production, composed mainly of calcium hydroxide with minor parts of carbonate - and compares its features to those of ""dry"" hydrated lime (HL) commonly used as a building material. Chemical, thermogravimetric and X-ray diffraction analyses indicated that the limes are similar in chemical and mineralogical compositions. except for the presence of carbon in the waste. Morphological and elemental chemical analyses by SEM and EDS revealed that CL particles differ from HL ones in their morphology and by the presence of carbon formations, Physical characterization included density and BET surface area of the materials. as well as, their particle size distributions in deionized water at diverse time periods. CL underwent agglomeration after approximately 60 min in water, whereas HL progressively became finer with time as determined by laser diffraction. In addition, water retention and squeeze flow tests were used to assess the pastes` fresh properties. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of Isabel (IGE) and Niagara (NGE) grape seed and peel extracts on lipid oxidation, instrumental colour, pH and sensory properties of raw and cooked processed chicken meat stored at -18 degrees C for nine months was evaluated. The pH of raw and cooked samples was not affected by the addition of grape extracts. IGE and NGE were effective in inhibiting the lipid oxidation of raw and cooked chicken meat, with results comparable to synthetic antioxidants. The extracts caused alterations in colour, as evidenced by the instrumental (darkening and lower intensity of red and yellow colour) and sensory results of cooked samples. In the sensory evaluation of odour and flavour, IGE produced satisfactory results, which did not differ from synthetic antioxidants. These findings suggest that the ICE and NGE are effective in retarding lipid oxidation of raw and cooked chicken meat during frozen storage. (c) 2011 Elsevier Ltd. All rights reserved.