967 resultados para hybrid evolutionary programming


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the generation of lace knitting stitch patterns by using genetic programming. We devise a genetic representation of knitting charts that accurately reflects their usage for hand knitting the pattern. We apply a basic evolutionary algorithm for generating the patterns, where the key of success is evaluation. We propose automatic evaluation of the patterns, without interaction with the user. We present some patterns generated by the method and then discuss further possibilities for bringing automatic evaluation closer to human evaluation. Copyright 2007 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valuable genetic variation for bean breeding programs is held within the common bean secondary gene pool which consists of Phaseolus albescens, P. coccineus, P. costaricensis, and P. dumosus. However, the use of close relatives for bean improvement is limited due to the lack of knowledge about genetic variation and genetic plasticity of many of these species. Characterisation and analysis of the genetic diversity is necessary among beans' wild relatives; in addition, conflicting phylogenies and relationships need to be understood and a hypothesis of a hybrid origin of P. dumosus needs to be tested. This thesis research was orientated to generate information about the patterns of relationships among the common bean secondary gene pool, with particular focus on the species Phaseolus dumosus. This species displays a set of characteristics of agronomic interest, not only for the direct improvement of common bean but also as a source of valuable genes for adaptation to climate change. Here I undertake the first comprehensive study of the genetic diversity of P. dumosus as ascertained from both nuclear and chloroplast genome markers. A germplasm collection of the ancestral forms of P. dumosus together with wild, landrace and cultivar representatives of all other species of the common bean secondary gene pool, were used to analyse genetic diversity, phylogenetic relationships and structure of P. dumosus. Data on molecular variation was generated from sequences of cpDNA loci accD-psaI spacer, trnT-trnL spacer, trnL intron and rps14-psaB spacer and from the nrDNA the ITS region. A whole genome DArT array was developed and used for the genotyping of P. dumosus and its closes relatives. 4208 polymorphic markers were generated in the DArT array and from those, 742 markers presented a call rate >95% and zero discordance. DArT markers revealed a moderate genetic polymorphism among P. dumosus samples (13% of polymorphic loci), while P. coccineus presented the highest level of polymorphism (88% of polymorphic loci). At the cpDNA one ancestral haplotype was detected among all samples of all species in the secondary genepool. The ITS region of P. dumosus revealed high homogeneity and polymorphism bias to P. coccineus genome. Phylogenetic reconstructions made with Maximum likelihood and Bayesian methods confirmed previously reported discrepancies among the nuclear and chloroplast genomes of P. dumosus. The outline of relationships by hybridization networks displayed a considerable number of interactions within and between species. This research provides compelling evidence that P. dumosus arose from hybridisation between P. vulgaris and P. coccineus and confirms that P. costaricensis has likely been involved in the genesis or backcrossing events (or both) in the history of P. dumosus. The classification of the specie P. persistentus was analysed based on cpDNA and ITS sequences, the results found this species to be highly related to P. vulgaris but not too similar to P. leptostachyus as previously proposed. This research demonstrates that wild types of the secondary genepool carry a significant genetic variation which makes this a valuable genetic resource for common bean improvement. The DArT array generated in this research is a valuable resource for breeding programs since it has the potential to be used in several approaches including genotyping, discovery of novel traits, mapping and marker-trait associations. Efforts should be made to search for potential populations of P. persistentus and to increase the collection of new populations of P. dumosus, P. albescens and P. costaricensis that may provide valuable traits for introgression into common bean and other Phaseolus crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms alone cannot solve optimization problems very efficiently since there are many random (not very rational) decisions in these algorithms. Combination of evolutionary algorithms and other techniques have been proven to be an efficient optimization methodology. In this talk, I will explain the basic ideas of our three algorithms along this line (1): Orthogonal genetic algorithm which treats crossover/mutation as an experimental design problem, (2) Multiobjective evolutionary algorithm based on decomposition (MOEA/D) which uses decomposition techniques from traditional mathematical programming in multiobjective optimization evolutionary algorithm, and (3) Regular model based multiobjective estimation of distribution algorithms (RM-MEDA) which uses the regular property and machine learning methods for improving multiobjective evolutionary algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.