991 resultados para holomorphic fourth- R polynomial
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff
Resumo:
000 Mathematics Subject Classification: Primary 16R50, Secondary 16W55.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
Resumo:
We present the first detailed application of Meadows’s cost-based modelling framework to the analysis of JFK, an Internet key agreement protocol. The analysis identifies two denial of service attacks against the protocol that are possible when an attacker is willing to reveal the source IP address. The first attack was identified through direct application of a cost-based modelling framework, while the second was only identified after considering coordinated attackers. Finally, we demonstrate how the inclusion of client puzzles in the protocol can improve denial of service resistance against both identified attacks.
Resumo:
Contemporary debates on the role of journalism in society are continuing the tradition of downplaying the role of proactive journalism - generally situated under the catchphrase of the Fourth Estate - in public policy making. This paper puts the case for the retention of a notion of a proactive form of journalism which can be broadly described as "investigative ", because it is important to the public policy process in modern democracies. It argues that critiques that downplay the potential of this form of journalism are flawed and overly deterministic. Finally. it seeks to illustrate how journalists can proactively inquire in ways that are relevant to the lives ofpeople in a range of settings, and that question elite sources in the interests ofthose people.
Resumo:
Industrial employment growth has been one of the most dynamic areas of expansion in Asia; however, current trends in industrialised working environments have resulted in greater employee stress. Despite research showing that cultural values affect the way people cope with stress, there is a dearth of psychometrically established tools for use in non-Western countries to measure these constructs. Studies of the "Way of Coping Checklist-Revised" (WCCL-R) in the West suggest that the WCCL-R has good psychometric properties, but its applicability in the East is still understudied. A confirmatory factor analysis (CFA) is used to validate the WCCL-R constructs in an Asian population. This study used 1,314 participants from Indonesia, Sri Lanka, Singapore, and Thailand. An initial exploratory factor analysis revealed that original structures were not confirmed; however, a subsequent EFA and CFA showed that a 38-item, five-factor structure model was confirmed. The revised WCCL-R in the Asian sample was also found to have good reliability and sound construct and concurrent validity. The 38-item structure of the WCCL-R has considerable potential in future occupational stress-related research in Asian countries.
Resumo:
The current study aims to investigate the non-linear relationship between the JD-R model and work engagement. Previous research has identified linear relationships between these constructs; however there are strong theoretical arguments for testing curvilinear relationships (e.g., Warr, 1987). Data were collected via a self-report online survey from officers of one Australian police service (N = 2,626). Results demonstrated a curvilinear relationship between job demands and job resources and engagement. Gender (as a control variable) was also found to be a significant predictor of work engagement. The results indicated that male police officers experienced significantly higher job demands and colleague support than female officers. However, female police officers reported significantly higher levels of work engagement than male officers. This study emphasises the need to test curvilinear relationships, as well as simple linear associations, when measuring psychological health.
Resumo:
This paper reports results from a study in which we automatically classified the query reformulation patterns for 964,780 Web searching sessions (composed of 1,523,072 queries) in order to predict what the next query reformulation would be. We employed an n-gram modeling approach to describe the probability of searchers transitioning from one query reformulation state to another and predict their next state. We developed first, second, third, and fourth order models and evaluated each model for accuracy of prediction. Findings show that Reformulation and Assistance account for approximately 45 percent of all query reformulations. Searchers seem to seek system searching assistant early in the session or after a content change. The results of our evaluations show that the first and second order models provided the best predictability, between 28 and 40 percent overall, and higher than 70 percent for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance in real time.
Resumo:
Significant sums of money are invested in developing technological innovations that have low levels and rates of adoption. Several approaches have been put forward in an effort to improve rates of adoption. This paper presents the results of study that examined the innovation fit of key technological innovations in the beef industry. Findings indicate that be assessing the innovation fit throughout the R&D process researchers and end users can collaborate to improve the innovation fit and the rate of adoption. The paper also put forward a model that demonstrates the linkages between R&D, adoption and innovation fit.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.