2 resultados para holomorphic fourth- R polynomial
em CaltechTHESIS
Resumo:
Government procurement of a new good or service is a process that usually includes basic research, development, and production. Empirical evidences indicate that investments in research and development (R and D) before production are significant in many defense procurements. Thus, optimal procurement policy should not be only to select the most efficient producer, but also to induce the contractors to design the best product and to develop the best technology. It is difficult to apply the current economic theory of optimal procurement and contracting, which has emphasized production, but ignored R and D, to many cases of procurement.
In this thesis, I provide basic models of both R and D and production in the procurement process where a number of firms invest in private R and D and compete for a government contract. R and D is modeled as a stochastic cost-reduction process. The government is considered both as a profit-maximizer and a procurement cost minimizer. In comparison to the literature, the following results derived from my models are significant. First, R and D matters in procurement contracting. When offering the optimal contract the government will be better off if it correctly takes into account costly private R and D investment. Second, competition matters. The optimal contract and the total equilibrium R and D expenditures vary with the number of firms. The government usually does not prefer infinite competition among firms. Instead, it prefers free entry of firms. Third, under a R and D technology with the constant marginal returns-to-scale, it is socially optimal to have only one firm to conduct all of the R and D and production. Fourth, in an independent private values environment with risk-neutral firms, an informed government should select one of four standard auction procedures with an appropriate announced reserve price, acting as if it does not have any private information.
Resumo:
Methods of filtering an n.m.r. spectrum which can improve the resolution by as much as a factor of ten are examined. They include linear filters based upon an information theory approach and non-linear filters based upon a statistical approach. The appropriate filter is determined by the nature of the problem. Once programmed on a digital computer they are both simple to use.
These filters are applied to some examples from 13C and 15N n.m.r. spectra.