968 resultados para hematopoietic stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson`s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study design: A prospective, non-randomized clinical series trial. Objective: To evaluate the effect of autogenous undifferentiated stem cell infusion for the treatment of patients with chronic spinal cord injury (SCI) on somatosensory evoked potentials (SSEPs). Setting: A public tertiary hospital in Sao Paulo, Brazil. Methods: Thirty-nine consecutive patients with diagnosed complete cervical and thoracic SCI for at least 2 years and with no cortical response in the SSEP study of the lower limbs were included in the trial. The trial patients underwent peripheral blood stem cell mobilization and collection. The stem cell concentrate was cryopreserved and reinfused through arteriography into the donor patient. The patients were followed up for 2.5 years and submitted to SSEP studies to evaluate the improvement in SSEPs after undifferentiated cell infusion. Results: Twenty-six (66.7%) patients showed recovery of somatosensory evoked response to peripheral stimuli after 2.5 years of follow-up. Conclusion: The 2.5-year trial protocol proved to be safe and improved SSEPs in patients with complete SCI. Sponsorship: None. Spinal Cord (2009) 47, 733-738; doi: 10.1038/sc.2009.24; published online 31 March 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: The expression of cancer/testis antigens (CTAs) on additional normal tissues or stem cells may restrict their use as cancer targets. The objective of the present study was to evaluate the mRNA levels of some CTAs in a variety of tissues. Materials and Methods: mRNA of pericytes, fibroblasts and mesenchymal stem cells (MSCs) derived from adult and fetal tissues, human umbilical vein endothelial cells, MSC-derived adipocytes, selected normal tissues and control cancer cell lines (CLs) were extracted and quantitative polymerase chain reaction was performed for MAGED1, PRAME, CTAG1B, MAGEA3 and MAGEA4. Results: MAGED1 was expressed in all normal tissues and cells evaluated. CTAG1B was expressed at levels comparable to control CLs on MSCs derived from arterial, fetal skin, adipose tissue and saphenous vein, heart, brain and skin tissues. MAGEA4 was detected only in fibroblasts and differentiated adipocytes from MSCs, at levels comparable to the control CLs. Conclusion: The potential use of CTAs in immunotherapy should take into account the potential off-target effects on MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autologous and allogeneic hematopoietic stem cell transplantation (HSCT) can be used in the management of patients with autoimmune disorders. Experience gained in adults has helped to better define the conditioning regimens required and appropriate selection of patients who are most likely to benefit from autologous HSCT. The field has been shifting toward the use of safer and less intense nonmyeloablative regimens used earlier in the disease course before patients accumulate extensive irreversible organ damage. This article reviews the experience of using autologous HSCT in treating the most common childhood autoimmune and rheumatic diseases, primarily juvenile idiopathic arthritis, systemic lupus erythematosus, and diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed and MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, we present (1) the scientific basis for the use of high-dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes (T1D); (2) an update of the clinical and laboratory outcome of 20 patients transplanted at the University Hospital of the Ribeirao Preto Medical School, University of Sao Paulo, Brazil, and followed up to January/2008, including 4 relapses among 19 patients without previous ketoacidosis; (3) a commentary on criticisms to our article that appeared in four articles from the scientific literature; and (4) a discussion of the prospectives for cellular therapy for T1D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation. hIDPSC and mouse blastocysts were used in this study. Fluorescence staining of hIDPSC and injection into mouse blastocysts, was performed. Histology, immunohistochemistry, fluorescence in situ hybridization and confocal microscopy were carried out. hIDPSC showed biological compatibility with the mouse host environment and could survive, proliferate and contribute to the inner cell mass as well as to the trophoblast cell layer after introduction into early mouse embryos (n = 28), which achieved the hatching stage following 24 and 48 h in culture. When transferred to foster mice (n = 5), these blastocysts with hIDPSC (n = 57) yielded embryos (n = 3) and foetuses (n = 6); demonstrating presence of human cells in various organs, such as brain, liver, intestine and hearts, of the human/mouse chimaeras. We verified whether hIDPSC would also be able to differentiate into specific cell types in the mouse environment. Contribution of hIDPSC in at least two types of tissues (muscles and epithelial), was confirmed. We showed that hIDPSC survived, proliferated and differentiated in mouse developing blastocysts and were capable of producing human/mouse chimaeras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Stem cells are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. An important source of adult stem cells is the dental pulp. In dentistry, regenerative strategies are of importance because of hard dental tissue damage especially as result of caries lesions, trauma, or iatrogenic procedures. The regeneration of dental tissues relies on the ability of stem cells to produce extracellular (ECM) proteins encountered in the dental pulp tissue. Thus, the aim of this study was to analyze the expression and distribution of proteins encountered in dental pulp ECM (type I collagen, fibronectin, and tenascin) in stem cells. Methods: Human immature dental pulp stem cells (hIDPSCs) from deciduous (DL-1 and DL-4 cell lines) and permanent (DL-2) teeth were used. The distribution of ECM proteins was observed using the immunofluorescence technique. The gene expression profile was evaluated using reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: Positive reactions for all ECM proteins were observed independently of the hIDPSCs analyzed. Type I collagen appeared less evident in DL-2 than in other hIDPSCs. Fibronectin and tenascin were less clear in DL-4. The RT-PCR reactions showed that type I collagen was lesser expressed in the DL-2 cells, whereas fibronectin and tenascin were similarly expressed in all hIDPSCs. Conclusions: The distribution and expression of ECM proteins differ among the hIDPSCs. These differences seemed to be related to the donor tooth conditions (deciduous or permanent, retained or erupted, and degree of root reabsorption). (J Endod 2010;36:826-831)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many adult tissues, mesenchymal stem cells (MSCs) are closely associated with perivascular niches and coexpress many markers in common with pericytes. The ability of pericytes to act as MSCs, however, remains controversial. By using genetic lineage tracing, we show that some pericytes differentiate into specialized tooth mesenchyme-derived cells-odontoblasts-during tooth growth and in response to damage in vivo. As the pericyte-derived mesenchymal cell contribution to odontoblast differentiation does not account for all cell differentiation, we identify an additional source of cells with MSC-like properties that are stimulated to migrate toward areas of tissue damage and differentiate into odontoblasts. Thus, although pericytes are capable of acting as a source of MSCs and differentiating into cells of mesenchymal origin, they do so alongside other MSCs of a nonpericyte origin. This study identifies a dual origin of MSCs in a single tissue and suggests that the pericyte contribution to MSC-derived mesenchymal cells in any given tissue is variable and possibly dependent on the extent of the vascularity.