892 resultados para helminth infection
Resumo:
Background Australian Indigenous children are the only population worldwide to receive the 7-valent pneumococcal conjugate vaccine (7vPCV) at 2, 4, and 6 months of age and the 23-valent pneumococcal polysaccharide vaccine (23vPPV) at 18 months of age. We evaluated this program's effectiveness in reducing the risk of hospitalization for acute lower respiratory tract infection (ALRI) in Northern Territory (NT) Indigenous children aged 5-23 months. Methods We conducted a retrospective cohort study involving all NT Indigenous children born from 1 April 2000 through 31 October 2004. Person-time at-risk after 0, 1, 2, and 3 doses of 7vPCV and after 0 and 1 dose of 23vPPV and the number of ALRI following each dose were used to calculate dose-specific rates of ALRI for children 5-23 months of age. Rates were compared using Cox proportional hazards models, with the number of doses of each vaccine serving as time-dependent covariates. Results There were 5482 children and 8315 child-years at risk, with 2174 episodes of ALRI requiring hospitalization (overall incidence, 261 episodes per 1000 child-years at risk). Elevated risk of ALRI requiring hospitalization was observed after each dose of the 7vPCV vaccine, compared with that for children who received no doses, and an even greater elevation in risk was observed after each dose of the 23vPPV ( adjusted hazard ratio [HR] vs no dose, 1.39; 95% confidence interval [CI], 1.12-1.71;). Risk was highest among children Pp. 002 vaccinated with the 23vPPV who had received < 3 doses of the 7vPCV (adjusted HR, 1.81; 95% CI, 1.32-2.48). Conclusions Our results suggest an increased risk of ALRI requiring hospitalization after pneumococcal vaccination, particularly after receipt of the 23vPPV booster. The use of the 23vPPV booster should be reevaluated.
Resumo:
Risks for HIV infection remain unknown in male street laborers. This research investigates patterns of self-reported risk behaviors among these men in urban Vietnam. In a cross-sectional survey using a social mapping technique, 450 men, mostly low-skilled and unregistered migrant laborers across 13 districts in Hanoi were approached for interviews. The study revealed that male street laborers were at high risk of acquiring and transmitting HIV. One in every 12 men reported homosexual or bisexual behavior. These men on average had three sexual partners within the preceding year, and condom use was inconsistent. Close to 95 % of the men had reported sexual encounters with regular partners. One-third with commercial sex workers (CSW) and 24.2 % with casual partners, but just under one-third had ever used condoms with regular partners and CSWs and very few (17.6 %) with casual partners at their last sexual encounter. 17.11 % used illicit drugs sometimes, with 66.7 % of them frequently sharing injecting equipment with peers. These men had limited HIV knowledge; 51.4 % incorrectly believed that, once you trust your partner, you no longer need to use condoms and 42.4 % believed that you can tell by looking at someone if they have HIV. Access to HIV prevention was also limited; only 19.8 % of men had been tested for HIV during the previous 12 months, almost 10 % of whom neither returned for the result nor knew their HIV status. The study provides interesting directions for future research and suggests ways to effectively design prevention strategies for these men.
Resumo:
Oral immunization is attractive as a delivery route because it is needle-free and useful for rapid mass vaccination programs to target pandemics or bioterrorism. This potential has not been realized for human vaccination, due to the requirement of large antigen doses and toxic (to humans) adjuvants to overcome the induction of oral tolerance and potential degradation of antigens in the stomach. To date, only oral vaccines based on live attenuated organisms have been approved for human use. In this study we describe the use of a lipid-based delivery system/adjuvant, Lipid C, for oral immunization to protect mice against genital tract chlamydial infection. Lipid C is formulated from food-grade purified and fractionated triglycerides. Bacterial shedding following vaginal challenge with Chlamydia muridarum was reduced by 50% in female mice orally immunized with the chlamydial major outer membrane protein (MOMP) formulated in Lipid C, protection equivalent to that seen in animals immunized with MOMP admixed with both cholera toxin (CT) and CpG oligodeoxynucleotides (CpG-ODN). Protection was further enhanced when MOMP, CT and CpG were all combined in the Lipid C matrix. Protection correlated with production of gamma interferon (IFN) by splenic T cells, a serum MOMP-specific IgG response and low but detectable levels of MOMP-specific IgA in vaginal lavage.
Resumo:
Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.
Resumo:
Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism.
Resumo:
Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients.
Immunity against a Chlamydia infection and disease may be determined by a balance of IL-17 signaling
Resumo:
Most vaccines developed against Chlamydia using animal models provide partial protection against a genital tract infection. However, protection against the oviduct pathology associated with infertility is highly variable and often has no defining immunological correlate. When comparing two adjuvants (CTA1-DD and a combination of Cholera toxin plus CpG- oligodeoxynucleotide–CT/CpG) combined with the chlamydial major outer membrane protein (MOMP) antigen and delivered via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, we identified two vaccine groups with contrasting outcomes following infection. SL immunization with MOMP/CTA1-DD induced a 70% reduction in the incidence of oviduct pathology, without significantly altering the course of infection. Conversely, IN immunization with MOMP/CT/CpG prevented an ascending infection, but not the oviduct pathology. This anomaly presented a unique opportunity to study the mechanisms by which vaccines can prevent oviduct pathology, other than by controlling the infection. The IL-17 signaling in the oviducts was found to associate with both the enhancement of immunity to infection and the development of oviduct pathology. This conflicting role of IL-17 may provide some explanation for the discordance in protection between infection and disease and suggests that controlling immunopathology, as opposed to the rapid eradication of the infection, may be essential for an effective human chlamydial vaccine that prevents infertility.
Resumo:
Chlamydia trachomatis is the most common sexually transmitted bacterial infection worldwide. The impact of this pathogen on human reproduction has intensified research efforts to better understand chlamydial infection and pathogenesis. Whilst there are animal models available that mimic the many aspects of human chlamydial infection, the mouse is regarded as the most practical and widely used of the models. Studies in mice have greatly contributed to our understanding of the host-pathogen interaction and provided an excellent medium for evaluating vaccines. Here we explore the advantages and disadvantages of all animal models of chlamydial genital tract infection, with a focus on the murine model and what we have learnt from it so far.
Resumo:
Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.
Resumo:
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Resumo:
Hand, Foot and Mouth Disease (HFMD) is a self-limiting viral disease that mainly affects infants and children. In contrast with other HFMD causing enteroviruses, Enterovirus71 (EV71) has commonly been associated with severe clinical manifestation leading to death. Currently, due to a lack in understanding of EV71 pathogenesis, there is no antiviral therapeutics for the treatment of HFMD patients. Therefore the need to better understand the mechanism of EV71 pathogenesis is warranted. We have previously reported a human colorectal adenocarcinoma cell line (HT29) based model to study the pathogenesis of EV71. Using this system, we showed that knockdown of DGCR8, an essential cofactor for microRNAs biogenesis resulted in a reduction of EV71 replication. We also demonstrated that there are miRNAs changes during EV71 pathogenesis and EV71 utilise host miRNAs to attenuate antiviral pathways during infection. Together, data from this study provide critical information on the role of miRNAs during EV71 infection.
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world’s population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations with two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.
Resumo:
Background Prevention strategies are critical to reduce infection rates in total joint arthroplasty (TJA), but evidence-based consensus guidelines on prevention of surgical site infection (SSI) remain heterogeneous and do not necessarily represent this particular patient population. Questions/Purposes What infection prevention measures are recommended by consensus evidence-based guidelines for prevention of periprosthetic joint infection? How do these recommendations compare to expert consensus on infection prevention strategies from orthopedic surgeons from the largest international tertiary referral centers for TJA? Patients and Methods A review of consensus guidelines was undertaken as described by Merollini et al. Four clinical guidelines met inclusion criteria: Centers for Disease Control and Prevention's, British Orthopedic Association, National Institute of Clinical Excellence's, and National Health and Medical Research Council's (NHMRC). Twenty-eight recommendations from these guidelines were used to create an evidence-based survey of infection prevention strategies that was administered to 28 orthopedic surgeons from members of the International Society of Orthopedic Centers. The results between existing consensus guidelines and expert opinion were then compared. Results Recommended strategies in the guidelines such as prophylactic antibiotics, preoperative skin preparation of patients and staff, and sterile surgical attire were considered critically or significantly important by the surveyed surgeons. Additional strategies such as ultraclean air/laminar flow, antibiotic cement, wound irrigation, and preoperative blood glucose control were also considered highly important by surveyed surgeons, but were not recommended or not uniformly addressed in existing guidelines on SSI prevention. Conclusion Current evidence-based guidelines are incomplete and evidence should be updated specifically to address patient needs undergoing TJA.