963 resultados para glass-forming ability
Resumo:
Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
Lokale sekundäre Prozesse in glasbildenden Materialien sind wegen ihrer Wechselwirkung mit der primären Relaxation von besonderem Interesse. Für D-Sorbitol wurde die beta-Relaxation mit drei verschiedenen dielektrischen Meßtechniken untersucht und die Ergebnisse miteinander verglichen. Im Gegensatz zu konventionellen Messungen der dielektrischen Retardation, detektiert eine echte dielektrische Relaxationsmessung den Zerfall des elektrischen Feldes unter der Bedingung einer konstanten dielektrischen Verschiebung. Eine weitere dielektrische Relaxationsmethode ist die Solvatationsdynamik. Sie detektiert die dielektrische Relaxation in der direkten Umgebung eines Farbstoffmoleküls. Die Übereinstimmung der lokal ermittelten und der makroskopisch gemittelten Ergebnisse für den Glaszustand weisen darauf hin, daß die Sekundärrelaxation in D-Sorbitol eine räumlich homogene Eigenschaft ist. Im Gegensatz zu beta-Prozessen anderer Materialien, zeigt nur der abgeschreckte Glaszustand von ortho-Terphenyl einen sekundären Prozeß. Es wurde beobachtet, daß die beta-Amplitude beim Ausheilen langsam abnimmt und im Gleichgewichtszustand der Flüssigkeit oberhalb der Glasübergangstemperatur völlig verschwindet. Viele glasbildende Materialien, wie z. B. Salol zeigen keinen dielektrischen beta-Prozeß. Im Gegensatz zu Messungen mit Standardkühlraten, zeigt eine stark abgeschreckte Salol-Probe eine symmetrische dielektrische Sekundärrelaxation. Diese neuartige Eigenschaft von Salol verschwindet irreversibel, wenn sich die Temperatur der Glasübergangstemperatur nähert.
Resumo:
In der vorliegenden Arbeit wurde die Druckabhängigkeit der molekularen Dynamik mittels 2H-NMR und Viskositätsmessungen untersucht. Für die Messungen wurde der niedermolekulare organische Glasbildner ortho-Terphenyl (OTP) ausgewählt, da dieser aufgrund einer Vielzahl vorliegender Arbeiten als Modellsubstanz angesehen werden kann. Daneben wurden auch Messungen an Salol durchgeführt.Die Untersuchungen erstreckten sich über einen weiten Druck- und Temperaturbereich ausgehend von der Schmelze bis weit in die unterkühlte Flüssigkeit. Dieser Bereich wurde aufgrund experimenteller Voraussetzungen immer durch eine Druckerhöhung erreicht.Beide Substanzen zeigten druckabhängig ein Verhalten, das dem der Temperaturvariation bei Normaldruck sehr ähnelt. Auf einer Zeitskala der molekularen Dynamik von 10E-9 s bis zu 10E+2 s wurde daher am Beispiel von OTP ein Druck-Temperatur-Zeit-Superpositionsprinzip diskutiert. Zudem konnte eine Temperatur-Dichte-Skalierung mit rho T-1/4 erfolgreich durchgeführt werden. Dies entspricht einem rein repulsiven Potentialverlauf mit rho -12±3 .Zur Entscheidung, ob die Verteilungsbreiten der mittleren Rotationskorrelationszeiten durch Druckvariation beeinflußt werden, wurden auch Ergebnisse anderer experimenteller Methoden herangezogen. Unter Hinzuziehung aller Meßergebnisse kann sowohl eine Temperatur- als auch Druckabhängigkeit der Verteilungsbreite bestätigt werden. Zur Auswertung von Viskositätsdaten wurde ein Verfahren vorgestellt, das eine quantitative Aussage über den Fragilitätsindex von unterkühlten Flüssigkeiten auch dann zuläßt, wenn die Messungen nicht bis zur Glasübergangstemperatur Tg durchgeführt werden. Die Auswertung der druckabhängigen Viskositätsdaten von OTP und Salol zeigt einen sehr differenzierten druckabhängigen Verlauf des Fragilitätsindexes für beide Glasbildner. OTP zeigt zunächst eine leichte Abnahme und danach wieder eine Zunahme des Fragilitätsindexes, dieses Ergebnis wird auch von Simulationsdaten, die der Literatur entnommen wurden, unterstützt. Salol hingegen zeigt zunächst eine deutliche Zunahme und danach eine Abnahme des Fragilitätsindexes. Das unterschiedliche Verhalten der beiden Glasbildner mit ähnlichem Fragilitätsindex bei Normaldruck wird auf die Wasserstoffbrückenbindungen innerhalb von Salol zurückgeführt.
Resumo:
In der vorliegenden Arbeit wird mittels Molekulardynamik(MD)-Computersimulationen die Dynamik von verschiedenen Alkalisilikaten in der Schmelze und im Glas untersucht. Es ist bekannt, daß diese Systeme ionenleitend sind, was auf eine hohe Mobilität der Alkaliionen im Vergleich zu den glasbildenden Komponenten Si und O zurückzuführen ist. Im Mittelpunkt des Interesses steht der sog. Mischalkalieffekt (MAE), der in ternären Mischungen aus Siliziumdioxid mit zwei Alkalioxiden auftritt. Gegenüber Mischungen mit nur einer Alkaliionensorte weisen letztere Systeme eine signifikante Verlangsamung der Alkaliionendiffusion auf. Zunächst werden zwei binäre Alkalisilikate simuliert, nämlich Lithiumdisilikat (LS2) und Kaliumdisilikat (KS2). Die Simulationen zeigen, daß der Ursprung der hohen Mobilität der Alkaliionen in der Struktur begründet ist. KS2 und LS2 weisen auf intermediären Längenskalen Ordnung auf, die in partiellen statischen Strukturfaktoren durch Prepeaks reflektiert ist. Die den Prepeaks zugrundeliegende Struktur erklärt sich durch perkolierende Netzwerke aus alkalioxidreichen Kanälen, die als Diffusionskanäle für die mobilen Alkaliionen fungieren. In diesen Kanälen bewegen sich die Ionen mittels Sprüngen (Hopping) zwischen ausgezeichneten Plätzen. In der Simulation beobachtet man für die hohen Temperaturen (4000K>=1500K) eine ähnliche Aktivierungsenergie wie im Experiment. Im Experiment findet allerdings unterhalb von ca.1200K ein Crossover in ein Arrheniusverhalten mit höherer Aktivierungsenergie statt, welches von der Simulation nicht nachvollzogen wird. Das kann mit der in der Simulation nicht im Gleichgewicht befindlichen Si-O-Matrix erklärt werden, bei der Alterungseffekte beobachtet werden. Am stärksten ist der MAE für eine Alkalikomponente, wenn deren Konzentrationsanteil in einem ternären Mischalkalisystem gegen 0 geht. Daher wird ein LS2-System untersucht, in dem ein Li-Ion gegen ein K-Ion getauscht wird. Der Einfluß des K-Ions ist sowohl lokal in den charakteristischen Abständen zu den ersten nächsten Nachbarn (NN) zu sehen, als auch in der ortsaufgelösten Koordinationszahlverteilung bis zu Längenskalen von ca. 8,5 Angstrom. Die Untersuchung der Dynamik des eingesetzten K-Ions zeigt, daß die Sprungwahrscheinlichkeit nicht mit der Lokalisierung, einem Maß für die Bewegung eines Teilchens um seine Ruheposition, korreliert ist, aber daß eine chemische Umgebung mit wenig Li- und vielen O-NN oder vielen Li- und wenig O-NN ein Sprungereignis begünstigt. Zuletzt wird ein ternäres Alkalisilikat (LKS2) untersucht, dessen Struktur alle charakteristischen Längenskalen von LS2 und KS2 aufweist. Es stellt sich also eine komplexe Struktur mit zwei perkolierenden Subnetzwerken für Alkaliionen ein. Die Untersuchung der Dynamik zeigt eine geringe Wahrscheinlichkeit dafür auf, daß Ionen in ein Subnetzwerk andersnamiger Ionen springen. Auch kann gezeigt werden, daß das Modellpotential den MAE reproduzieren kann, daß also die Diffusionskonstanten in LKS2 bei bis zu einer Größenordnung langsamer sind als in KS2 bzw. LS2. Der beobachtete Effekt stellt sich zudem vom funktionalen Verlauf her so dar, wie er beim MAE erwartet wird. Es wurde auch festgestellt, daß trotz der zeitlichen Verzögerung in den dynamischen Größen die Anzahl der Sprünge pro Zeit nicht geringer ist und daß für niedrige Temperaturen (d.h.im Glas) Sprünge auf den Nachbarplatz mit anschließendem Rücksprung auf die vorherige Position deutlich wahrscheinlicher sind als bei hohen Temperaturen (also in der Schmelze). Die vorliegenden Resultate geben Aufschluß über die Details der Mechanismen mikroskopischer Ionenleitung in binären und ternären Alkalisilikaten sowie dem MAE.
Resumo:
This thesis was aimed at investigating the physical-chemical properties and the behaviour in physiological environment of two classes of bioceramics: calcium silicate-based dental cements and alumina-based femoral heads for hip joint prostheses. The material characterization was performed using spectroscopic techniques such as that allow to obtain information on the molecular structure of the species and phases present in the analyzed samples. Raman, infrared and fluorescence spectroscopy was principally used. Calcium silicate cements, such as MTA (Mineral Trioxide Aggregate), are hydraulic materials that can set in presence of water: this characteristic makes them suitable for oral surgery and in particular as root-end filling materials. With the aim to improve the properties of commercial MTA cements, several MTA-based experimental formulations have been tested with regard to bioactivity (i.e. apatite forming ability) upon ageing in simulated body fluids. The formation of a bone-like apatite layer may support the integration in bone tissue and represents an essential requirement for osteoconduction and osteoinduction. The spectroscopic studies demonstrated that the experimental materials under study had a good bioactivity and were able to remineralize demineralized dentin. . Bioceramics thanks to their excellent mechanical properties and chemical resistance, are widely used as alternative to polymer (UHMWPE) and metal alloys (Cr-Co) for hip-joint prostesis. In order to investigate the in vivo wear mechanisms of three different generations of commercial bioceramics femoral heads (Biolox®, Biolox® forte, and Biolox® delta), fluorescence and Raman spectroscopy were used to investigate the surface properties and residual stresses of retrieved implants. Spectroscopic results suggested different wear mechanisms in the three sets of retrievals. Since Biolox® delta is a relatively recent material, the Raman results on its retrievals has been reported for the first time allowing to validate the in vitro ageing protocols proposed in the literature to simulate the effects of the in vivo wear.
Resumo:
Clostridium difficile is an obligate anaerobic, Gram-positive, endospore-forming bacterium. Although an opportunistic pathogen, it is one of the important causes of healthcare-associated infections. While toxins TcdA and TcdB are the main virulence factors of C. difficile, the factors or processes involved in gut colonization during infection remain unclear. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Little is known about biofilm formation by anaerobic gut species. Biofilm formation by C. difficile could play a role in virulence and persistence of C. difficile, as seen for other intestinal pathogens. We demonstrate that C. difficile clinical strains, 630, and the strain isolated in the outbreak, R20291, form structured biofilms in vitro. Biofilm matrix is made of proteins, DNA and polysaccharide. Strain R20291 accumulates substantially more biofilm. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella and a putative quorum sensing regulator, LuxS, Spo0A, are required for maximal biofilm formation by C. difficile. Moreover we demonstrate that bacteria in C. difficile biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI, and that inhibitory and sub-inhibitory concentrations of the same antibiotic induce biofilm formation. Surprisingly, clinical C. difficile strains from the same out-break, but from different origin, show differences in biofilm formation. Genome sequence analysis of these strains showed presence of a single nucleoide polymorphism (SNP) in the anti-σ factor RsbW, which regulates the stress-induced alternative sigma factor B (σB). We further demonstrate that RsbW, a negative regulator of alternative sigma factor B, has a role in biofilm formation and sporulation of C. difficile. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.
Resumo:
Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^
Resumo:
Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.
Resumo:
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.
Resumo:
Recent evidence suggests a potential role for thrombospondin-2 (TSP-2), a matricellular glycoprotein, in the regulation of primary angiogenesis. To directly examine the biological effect of TSP-2 expression on tumor growth and angiogenesis, human A431 squamous cell carcinoma cells, which do not express TSP-2, were stably transfected with a murine TSP-2 expression vector or with vector alone. A431 cells expressing TSP-2 did not show an altered growth rate, colony-forming ability, or susceptibility to induction of apoptosis in vitro. However, injection of TSP-2-transfected clones into the dermis of nude mice resulted in pronounced inhibition of tumor growth that was significantly stronger than the inhibition observed in A431 clones stably transfected with a thrombospondin-1 (TSP-1) expression vector, and combined overexpression of TSP-1 and TSP-2 completely prevented tumor formation. Extensive areas of necrosis were observed in TSP-2-expressing tumors, and both the density and the size of tumor vessels were significantly reduced, although tumor cell expression of the major tumor angiogenesis factor, vascular endothelial growth factor, was maintained at high levels. These findings establish TSP-2 as a potent endogenous inhibitor of tumor growth and angiogenesis.
Resumo:
Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.
Resumo:
The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.
Resumo:
The transcription factors c-myb and GATA-2 are both required for blood cell development in vivo and in vitro. However, very little is known on their mechanism(s) of action and whether they impact on complementary or overlapping pathways of hematopoietic proliferation and differentiation. We report here that embryonic stem (ES) cells transfected with c-myb or GATA-2 cDNAs, individually or in combination, underwent hematopoietic commitment and differentiation in the absence of added hematopoietic growth factors but that stimulation with c-kit and flt-3 ligands enhanced colony formation only in the c-myb transfectants. This enhancement correlated with c-kit and flt-3 surface receptor up-regulation in c-myb-(but not GATA-2-) transfected ES cells. Transfection of ES cells with either a c-myb or a GATA-2 antisense construct abrogated erythromyeloid colony-forming ability in methyl cellulose; however, introduction of a full-length GATA-2 or c-myb cDNA, respectively, rescued the hematopoiesis-deficient phenotype, although only c-myb-rescued ES cells expressed c-kit and flt-3 surface receptors and formed increased numbers of hematopoietic colonies upon stimulation with the cognate ligands. These results are in agreement with previous studies indicating a fundamental role of c-myb and GATA-2 in hematopoiesis. Of greater importance, our studies suggest that GATA-2 and c-myb exert their roles in hematopoietic gene regulation through distinct mechanisms of action in nonoverlapping pathways.