775 resultados para geometry algorithm
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm
Resumo:
Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique.
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This text is based on a research, which is still in progress, whose main objective is to identify and understand what are the main difficulties of future mathematics teachers of basic education are, regarding their content knowledge in geometry in the context of the curricular unit of Geometry during their undergraduate degree. We chose a qualitative approach in the form of case study, in which data collection was done through observation, interviews, a diverse set of tasks, a diagnostic test and other documents. This paper focuses on the test given to prospective teachers at the beginning of the course. The preliminary analysis of the data points to a weak performance of preservice teachers in the test issues addressing elementary knowledge of Geometry.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
The use of composite laminates in complex structures has increased significantly. However, there are still some issues when considering their use, mainly related with machining, leading to some difficulties and lack of acceptance. In this work, a methodology to evaluate drill geometry and feed rate based on thrust force and delamination extension is presented.
Resumo:
This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática