973 resultados para genetic heterogeneity of environmental variation
Resumo:
Partial cytochrome b DNA sequences for 62 Triatoma infestans were analyzed to determine the degree of genetic variation present in populations of this insect in the northwest region of Chuquisaca, Bolivia. A total of seven haplotypes were detected in the localities sampled. The phylogenetic relationship and population genetic structure of the haplotypes found in this region, indicate that there is greater variation in this relatively small region of Bolivia than what has been previously reported by studies using the same gene fragment, for more distant geographic areas of this country. In addition, a comparison of rural and peri-urban localities, indicate that there is no difference in the genetic variation of T. infestans between these two environments.
Resumo:
The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
The population genetic structure of Anopheles darlingi, the major human malaria vector in the Neotropics, was examined using seven microsatellite loci from nine localities in central and western Amazonian Brazil. High levels of genetic variability were detected (5-25 alleles per locus; H E = 0.519-0.949). There was deviation from Hardy-Weinberg Equilibrium for 59.79% of the tests due to heterozygote deficits, while the analysis of linkage disequilibrium was significant for only two of 189 (1.05%) tests, most likely caused by null alleles. Genetic differentiation (F ST = 0.001-0.095; Nm = 4.7-363.8) indicates that gene flow is extensive among locations < 152 km apart (with two exceptions) and reduced, but not absent, at a larger geographic scale. Genetic and geographic distances were significantly correlated (R² = 0.893, P < 0.0002), supporting the isolation by distance (IBD) model. The overall estimate of Ne was 202.4 individuals under the linkage disequilibrium model, and 8 under the heterozygote excess model. Analysis of molecular variance showed that nearly all variation (~ 94%) was within sample locations. The UPGMA phenogram clustered the samples geographically, with one branch including 5/6 of the state of Amazonas localities and the other branch the Acre, Rondônia, and remaining Amazonas localities. Taken together, these data suggest little genetic structure for An. darlingi from central and western Amazonian Brazil. These findings also imply that the IBD model explains nearly all of the differentiation detected. In practical terms, populations of An. darlingi at distances < 152 km should respond similarly to vector control measures, because of high gene flow.
Resumo:
The mTOR (mammalian target of rapamycin) signal transduction pathway integrates various signals, regulating ribosome biogenesis and protein synthesis as a function of available energy and amino acids, and assuring an appropriate coupling of cellular proliferation with increases in cell size. In addition, recent evidence has pointed to an interplay between the mTOR and p53 pathways. We investigated the genetic variability of 67 key genes in the mTOR pathway and in genes of the p53 pathway which interact with mTOR. We tested the association of 1,084 tagging SNPs with prostate cancer risk in a study of 815 prostate cancer cases and 1,266 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). We chose the SNPs (n = 11) with the strongest association with risk (p<0.01) and sought to replicate their association in an additional series of 838 prostate cancer cases and 943 controls from EPIC. In the joint analysis of first and second phase two SNPs of the PRKCI gene showed an association with risk of prostate cancer (ORallele = 0.85, 95% CI 0.78–0.94, p = 1.3×10−3 for rs546950 and ORallele = 0.84, 95% CI 0.76–0.93, p = 5.6×10−4 for rs4955720). We confirmed this in a meta-analysis using as replication set the data from the second phase of our study jointly with the first phase of the Cancer Genetic Markers of Susceptibility (CGEMS) project. In conclusion, we found an association with prostate cancer risk for two SNPs belonging to PRKCI, a gene which is frequently overexpressed in various neoplasms, including prostate cancer.
Resumo:
The investigation of the genetic variation and population structure of Chrysomya species is of great interest for both basic and applied research. However, very limited genetic information is available for this genus across its geographical distribution. Here, we describe 12 polymorphic microsatellite loci isolated from Chrysomya putoria with expected heterozygosities ranging from 0.1402-0.8312. These markers are of potential applied interest for forensic entomologists and for the characterisation of the genetic structure of C. putoria from recently colonised regions, with great promise for understanding the colonisation dynamics and spread of the genus Chrysomya in the New World.
Resumo:
BACKGROUND Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk. METHODS A case-control study design was used to test the association between prostate cancer risk and the polymorphisms TNF-A-308 A/G (rs 1800629), RANTES-403 G/A (rs 2107538), IL1-A-889 C/T (rs 1800587) and MCP-1 2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area. RESULTS Diagnosis of prostate cancer was significantly associated with TNF-A GA + AA genotype (OR, 1.61; 95% CI, 1.09-2.64) and RANTES GA + AA genotype (OR, 1.44; 95% CI, 1.09-2.38). A alleles in TNF-A and RANTES influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and IL1-A or MCP-1 polymorphisms. CONCLUSION Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development.
Resumo:
BACKGROUND. Several lines of evidence suggest that chemokines and cytokines play an important role in the inflammatory development and progression of systemic lupus erythematosus. The aim of this study was to evaluate the relevance of functional genetic variations of RANTES, IL-8, IL-1alpha, and MCP-1 for systemic lupus erythematosus. METHODS. The study was conducted on 500 SLE patients and 481 ethnically matched healthy controls. Genotyping of polymorphisms in the RANTES, IL-8, IL-1alpha, and MCP-1 genes were performed using a real-time polymerase chain reaction (PCR) system with pre-developed TaqMan allelic discrimination assay. RESULTS. No significant differences between SLE patients and healthy controls were observed when comparing genotype, allele or haplotype frequencies of the RANTES, IL-8, IL-1alpha, and MCP-1 polymorphisms. In addition, no evidence for association with clinical sub-features of SLE was found. CONCLUSION. These results suggest that the tested functional variation of RANTES, IL-8, IL-1alpha, and MCP-1 genes do not confer a relevant role in the susceptibility or severity of SLE in the Spanish population.
Resumo:
Infection with some genotypes of human papillomavirus (HPV) is the most important risk factor associated with cervical cancer (CC). Throughout the world, HPV type 58 prevalence varies from one region to another; it is higher in women from certain countries in Asia and Latin America, such as China and Mexico. Although intratypic variants have been reported on a few occasions, our knowledge about HPV 58 genetic variation remains limited. Therefore, this work aims to (i) determine the prevalence of HPV type 58 amongst Mexican women with invasive CC or precursor lesions and (ii) identify HPV 58 sequence variants. One hundred and forty five colposcopy clinic patients were studied. Genotyping of HPV 16, 18 and 58 was determined by specific nested PCR and HPV 58 variants were detected by direct sequencing. The general prevalence of HPV was 51.7% (75/145). HPV 16 was found in 30.6% (23/75) and HPV 58 in 24% (18/75) of the patients. HPV 18 was not identified in patients with cervical intraepithelial neoplasia (CIN) grade I; it was only found in those with CIN II, with a prevalence of 6.8% (3/44). In patients with CC, the prevalence of HPV 16 and 58 was 78.9%. Regarding HPV 58 variants, 94.4% of the HPV 58 sequences were identical to the prototype strain, whereas one sample showed changes at a single nucleotide. This study demonstrates a high prevalence of HPV 58 and a low genetic variability of E6 sequences amongst Mexican colposcopy patients.
Resumo:
DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.
Resumo:
Supportive breeding is an important tool in conservation management, but its long-term genetic consequences are not well understood. Among the factors that could affect the genetics of the offspring is sperm competition as a consequence of mixed-milt fertilizations - which is still a common practice in many hatcheries. Here, we measured and combined the relevant factors to predict the genetic consequences of various kinds of hatchery-induced sperm competition. We drew a random sample of male Coregonus zugensis (an Alpine whitefish) from a hatchery program and quantified their in vitro sperm potency by integrating sperm velocity during the first minute after activation, and their in vitro milt potency by multiplying sperm potency with milt volume and sperm cell density. We found that not controlling for sperm density and/or milt volume would, at a constant population size, decrease the variance effective number of male breeders N-em by around 40-50%. This loss would decrease with increasing population growth rates. Partial multifactorial breeding and the separate rearing of in total 799 batches of eggs revealed that neither sperm nor milt potency was significantly linked to egg survival. Sperm and milt potency was also not significantly correlated to other potential quality measures such as breeding tubercles or condition factor. However, sperm potency was correlated to male age and milt potency to male growth rate. Our findings suggest that hatchery-induced sperm competition not only increases the loss of genetic variation but may also induce artificial selection, depending on the fertilization protocol. By not equalizing milt volume in multi-male fertilization hatchery managers lose relatively more genetic variation and give fast-growing males a reproductive advantage, while equalizing milt volume reduces the loss of genetic variation and favors younger males who may have fast sperm to compensate for their subdominance at the spawning place. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Caveolae are involved in physical compartmentalization between different groups of signaling events. Its main component, CAV1, modulates different pathways in cellular physiology. The emerging evidence pointing to the role of CAV1 in cancer led us to study whether different alleles of this gene are associated with colorectal cancer (CRC). Since one of the most characterized enzymes regulated by CAV1 is eNOS, we decided to include both genes in this study. We analyzed five SNPs in 360 unrelated CRC patients and 550 controls from the general population. Two of these SNPs were located within eNOS and three within the CAV1 gene. Although haplotype distribution was not associated with CRC, haplotype TiA (CAV1) was associated with familiar forms of CRC (p<0.05). This was especially evident in CRC antecedents and nuclear forms of CRC. If both CG (eNOS) and TiA (CAV1) haplotypes were taken together, this association increased in significance. Thus, we propose that CAV1, either alone or together with eNOS alleles, might modify CRC heritability.
Resumo:
Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus).
Resumo:
Lymphatic filarial (LF) parasites have been under anti-filarial drug pressure for more than half a century. Currently, annual mass drug administration (MDA) of diethylcarbamazine (DEC) or ivermectin in combination with albendazole (ALB) have been used globally to eliminate LF. Long-term chemotherapies exert significant pressure on the genetic structure of parasitic populations. We investigated the genetic variation among 210 Wuchereria bancrofti populations that were under three different chemotherapy strategies, namely MDA with DEC alone (group I, n = 74), MDA with DEC and ALB (group II, n = 60) and selective therapy (ST) with DEC (group III, n = 34) to understand the impact of these three drug regimens on the parasite genetic structure. Randomly amplified polymorphic DNA profiles were generated for the three groups of parasite populations; the gene diversity, gene flow and genetic distance values were determined and phylogenetic trees were constructed. Analysis of these parameters indicated that parasite populations under ST with a standard dose of DEC (group III) were genetically more diverse (0.2660) than parasite populations under MDA with DEC alone (group I, H = 0.2197) or with DEC + ALB (group II, H = 0.2317). These results indicate that the MDA may reduce the genetic diversity of W. bancrofti populations when compared to the genetic diversity of parasite populations under ST.
Resumo:
Reliable molecular markers are essential for a better understanding of the molecular epidemiology of Plasmodium vivax, which is a neglected human malaria parasite. The aim of this study was to analyze the genetic diversity of P. vivax isolates from the Brazilian Amazon using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the highly polymorphic merozoite surface protein-3alpha (PvMSP-3α) gene. To accomplish this, 60 isolates of P. vivax from different endemic areas in the Brazilian Amazon were collected. The PvMSP-3α gene was amplified by nested-PCR. Three major types of the PvMSP-3α locus were detected at different frequencies: type A (68%), B (15%) and C (17%). A single sample showed two PCR fragments, which corresponded to infection with types A and C. PCR-RFLP analysis using the HhaI restriction enzyme for 52 isolates clearly identified 11 haplotypes, eight of which were from type A, two from type B and only one from type C. Seven other isolates did not show a clear pattern using PCR-RFLP. This result might be due to multiple clone infections. This study showed a high diversity of the PvMSP-3α gene among P. vivax isolates from the Brazilian Amazon, but also indicated that the detection performance of PCR-RFLP of the PvMSP-3α gene may not be sufficient to detect multiple clone infections.