893 resultados para energy sources


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European energy sector is undergoing a major transformation and is facing a series of difficult challenges. These include a high and increasing dependence on external energy resources; dramatically reduce the need for the emissions of greenhouse gases to meet environmental objectives and the difficulties related to the promotion of energy market effectively integrated and competitive. Some of the policies associated with the various objectives are sometimes in conflict with each other, while in other cases are mutually reinforcing.The aim of this paper is to do a scienti?c analysis of the developments so far and the expectations for the coming period focusing on the pillars of energy policy in the EU in terms of security of supply, environment, climate change and promoting a competitive and integrated market. The use of renewable energy sources is seen as a key element of European energy policy and should help to: reduce dependence on fuel from non-member countries; reduce emissions from carbon-based energy sources, and; decouple energy costs from oil prices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need of new systems for the storage and conversion of renewable energy sources is fueling the research in supercapacitors. In this work, we propose a low temperature route for the synthesis of electrodes for these supercapacitors: electrodeposition of a transition metal hydroxide–Ni(OH)2 on a graphene foam. This electrode combines the superior mechanical and electrical properties of graphene, the large specific surface area of the foam and the large pseudocapacitance of Ni(OH)2. We report a specific capacitance up to 900 F/g as well as specific power and energy comparable to active carbon electrodes. These electrodes are potential candidates for their use in energy applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Esta Tesis surgió ante la intensidad y verosimilitud de varias señales o “warnings” asociadas a políticas dirigidas a reducir el peso del petróleo en el sector energético, tanto por razones económicas, como geopolíticas, como ambientales. Como tal Tesis se consolidó al ir incorporando elementos novedosos pero esenciales en el mundo petrolífero, particularmente las “tecnologías habilitantes”, tanto de incidencia directa, como el “fracking” como indirecta, del cual es un gran ejemplo el Vehículo Eléctrico (puro). La Tesis se definió y estructuró para elaborar una serie de indagaciones y disquisiciones, que comportaran un conjunto de conclusiones que fueran útiles para las corporaciones energéticas. También para la comprensión de la propia evolución del sector y de sus prestaciones técnicas y económicas, de cara a dar el servicio que los usuarios finales piden. Dentro de las tareas analíticas y reflexivas de la Tesis, se acuñaron ciertos términos conceptuales para explicar más certeramente la realidad del sector, y tal es el caso del “Investment burden”, que pondera la inversión específica (€/W) requerida por una instalación, con la duración del período de construcción y los riesgos tanto tangibles como regulatorios. Junto a ello la Tesis propone una herramienta de estudio y prognosis, denominada “Market integrated energy efficiency”, especialmente aplicable a dicotomías. Tal es el caso del coche térmico, versus coche eléctrico. El objetivo es optimizar una determinada actividad energética, o la productividad total del sector. Esta Tesis propone varias innovaciones, que se pueden agrupar en dos niveles: el primero dentro del campo de la Energía, y el segundo dentro del campo de las corporaciones, y de manera especial de las corporaciones del sector hidrocarburos. A nivel corporativo, la adaptación a la nueva realidad será función directa de la capacidad de cada corporación para desarrollar y/o comprar las tecnologías que permitan mantener o aumentar cuota de mercado. Las conclusiones de la Tesis apuntan a tres opciones principalmente para un replanteamiento corporativo: - Diversificación energética - Desplazamiento geográfico - Beneficiándose de posibles nuevos nichos tecnológicos, como son: • En upstream: Recuperación estimulada de petróleo mediante uso de energías renovables • En downstream: Aditivos orientados a reducir emisiones • En gestión del cambio: Almacenamiento energético con fines operativos Algunas políticas energéticas siguen la tendencia de crecimiento cero de algunos países de la OCDE. No obstante, la realidad mundial es muy diferente a la de esos países. Por ejemplo, según diversas estimaciones (basadas en bancos de datos solventes, referenciados en la Tesis) el número de vehículos aumentará desde aproximadamente mil millones en la actualidad hasta el doble en 2035; mientras que la producción de petróleo sólo aumentará de 95 a 145 millones de barriles al día. Un aumento del 50% frente a un aumento del 100%. Esto generará un curioso desajuste, que se empezará a sentir en unos pocos años. Las empresas y corporaciones del sector hidrocarburos pueden perder el monopolio que atesoran actualmente en el sector transporte frente a todas las demás fuentes energéticas. Esa pérdida puede quedar compensada por una mejor gestión de todas sus capacidades y una participación más integrada en el mundo de la energía, buscando sinergias donde hasta ahora no había sino distanciamiento. Los productos petrolíferos pueden alimentar cualquier tipo de maquina térmica, como las turbinas Brayton, o alimentar reformadores para la producción masiva de H2 para su posterior uso en pilas combustible. El almacenamiento de productos derivados del petróleo no es ningún reto ni plantea problema alguno; y sin embargo este almacenamiento es la llave para resolver muchos problemas. Es posible que el comercio de petróleo se haga menos volátil debido a los efectos asociados al almacenamiento; pero lo que es seguro es que la eficiencia energética de los usos de ese petróleo será más elevada. La Tesis partía de ciertas amenazas sobre el futuro del petróleo, pero tras el análisis realizado se puede vislumbrar un futuro prometedor en la fusión de políticas medioambientales coercitivas y las nuevas tecnologías emergentes del actual portafolio de oportunidades técnicas. ABSTRACT This Thesis rises from the force and the credibility of a number of warning signs linked to policies aimed at reducing the role of petroleum in the energy industry due to economical, geopolitical and environmental drives. As such Thesis, it grew up based on aggregating new but essentials elements into the petroleum sector. This is the case of “enabling technologies” that have a direct impact on the petroleum industry (such as fracking), or an indirect but deep impact (such as the full electrical vehicle). The Thesis was defined and structured in such a way that could convey useful conclusions for energy corporations through a series of inquiries and treatises. In addition to this, the Thesis also aims at understating la evolution of the energy industry and its capabilities both technical and economical, towards delivering the services required by end users. Within the analytical task performed in the Thesis, new terms were coined. They depict concepts that aid at explaining the facts of the energy industry. This is the case for “Investment burden”, it weights the specific capital investment (€/W) required to build a facility with the time that takes to build it, as well as other tangible risks as those posed by regulation. In addition to this, the Thesis puts forward an application designed for reviewing and predicting: the so called “Market integrated energy efficiency”, especially well-suited for dichotomies, very appealing for the case of the thermal car versus the electric car. The aim is to optimize energy related activity; or even the overall productivity of the system. The innovations proposed in this Thesis can be classified in two tiers. Tier one, within the energy sector; and tier two, related to Energy Corporation in general, but with oil and gas corporations at heart. From a corporate level, the adaptation to new energy era will be linked with the corporation capability to develop or acquire those technologies that will yield to retaining or enhancing market share. The Thesis highlights three options for corporate evolution: - diversification within Energy - geographic displacement - profiting new technologies relevant to important niches of work for the future, as: o Upstream: enhanced oil recovery using renewable energy sources (for upstream companies in the petroleum business) o Downstream: additives for reducing combustion emissions o Management of Change: operational energy storage Some energy policies tend to follow the zero-growth of some OECD countries, but the real thing could be very different. For instance, and according to estimates the number of vehicles in use will grow from 1 billion to more than double this figure 2035; but oil production will only grow from 95 million barrel/day to 145 (a 50% rise of versus an intensification of over a 100%). Hydrocarbon Corporation can lose the monopoly they currently hold over the supply of energy to transportation. This lose can be mitigated through an enhanced used of their capabilities and a higher degree of integration in the world of energy, exploring for synergies in those places were gaps were present. Petroleum products can be used to feed any type of thermal machine, as Brayton turbines, or steam reformers to produce H2 to be exploited in fuel cells. Storing petroleum products does not present any problem, but very many problems can be solved with them. Petroleum trading will likely be less volatile because of the smoothing effects of distributed storage, and indeed the efficiency in petroleum consumption will be much higher. The Thesis kicked off with a menace on the future of petroleum. However, at the end of the analysis, a bright future can be foreseen in the merging between highly demanding environmental policies and the relevant technologies of the currently emerging technical portfolio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Initiated in May 2011, several months after the Fukushima nuclear disaster, Germany’s energy transformation (Energiewende) has been presented as an irrevocable plan, and – due to the speed of change required – it represents a new quality in Germany’s energy strategy. Its main objectives include: nuclear energy being phased out by 2022, the development of renewable energy sources (OZE), the expansion of transmission networks, the construction of new conventional power plants and an improvement in energy efficiency.The cornerstone of the strategy is the development of renewable energy. Under Germany's amended renewable energy law, the proportion of renewable energy in electricity generation is supposed to increase steadily from the current level of around 20% to approximately 38% in 2020. In 2030, renewable energy is expected to account for 50% of electricity generation. This is expected to increase to 65% in 2040 and to as much as 80% in 2050. The impact of the Energiewende is not limited to the sphere of energy supplies. In the medium and long term, it will change not only to the way the German economy operates, but also the functioning of German society and the state. Facing difficulties with the expansion of transmission networks, the excessive cost of building wind farms, and problems with the stability of electricity supplies, especially during particularly cold winters, the federal government has so far tended to centralise power and limit the independence of the German federal states with regard to their respective energy policies, justifying this with the need for greater co-ordination. The Energiewende may also become the beginning of a "third industrial revolution", i.e. a transition to a green economy and a society based on sustainable development. This will require a new "social contract" that will redefine the relations between the state, society and the economy. Negotiating such a contract will be one of the greatest challenges for German policy in the coming years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One year after the events of Fukushima the implementation of the new German energy strategy adopted in the summer of 2011 is being verified. Business circles, experts and publicists are sounding the alarm. The tempo at which the German economy is being rearranged in order that it uses renewable energy sources is so that it has turned out to be an extremely difficult and expensive task. The implementation of the key guidelines of the new strategy, such as the development of the transmission networks and the construction of new conventional power plants, is meeting increasing resistance in the form of economic and legal difficulties. The development of the green technologies sector is also posing problems. The solar energy industry, for example, is excessively subsidised, whereas the subsidies for the construction of maritime wind farms are too low. At present, only those guidelines of the strategy which are evaluated as economically feasible by investors or which receive adequate financial support from the state have a chance of being carried through. The strategy may also turn out to be unsuccessful due to the lack of a comprehensive coordination of its implementation and the financial burden its introduction entails for both the public and the economy. In the immediate future, the German government will make efforts not only to revise its internal regulations in order to enable the realisation of the energy transformation; it is also likely to undertake a number of measures at the EU forum which will facilitate this realisation. One should expect that the German government will actively support the financing of both the development of the energy networks in EU member states and the development of renewable energy sources in the energy sector.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this technical report is to quantify alternative energy demand and supply scenarios for ten southern and eastern Mediterranean countries up to 2030. The report presents the model-based results of four alternative scenarios that are broadly in line with the MEDPRO scenario specifications on regional integration and cooperation with the EU. The report analyses the main implications of the scenarios in the following areas: • final energy demand by sector (industry, households, services, agriculture and transport); • the evolution of the power generation mix, the development of renewable energy sources and electricity exports to the EU; • primary energy production and the balance of trade for hydrocarbons; • energy-related CO2 emissions; and • power generation costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Germany’s current energy strategy, known as the “energy transition”, or Energiewende, involves an accelerated withdrawal from the use of nuclear power plants and the development of renewable energy sources (RES). According to the government’s plans, the share of RES in electricity production will gradually increase from its present rate of 26% to 80% in 2050. Greenhouse gas emissions are expected to fall by 80–95% by 2050 when compared to 1990 levels. However, coal power plants still predominate in Germany’s energy mix – they produced 44% of electricity in 2014 (26% from lignite and 18% from hard coal). This makes it difficult to meet the emission reduction objectives, lignite combustion causes the highest levels of greenhouse gas emissions. In order to reach the emission reduction goals, the government launched the process of accelerating the reduction of coal consumption. On 2 July, the Federal Ministry for Economic Affairs and Energy published a plan to reform the German energy market which will be implemented during the present term of government. Emission reduction from coal power plants is the most important issue. This problem has been extensively discussed over the past year and has transformed into a conflict between the government and the coal lobby. The dispute reached its peak when lignite miners took to the streets in Berlin. As the government admits, in order to reach the long-term emission reduction objectives, it is necessary to completely liquidate the coal energy industry in Germany. This is expected to take place within 25 to 30 years. However, since the decision to decommission nuclear power plants was passed, the German ecological movement and the Green Party have shifted their attention to coal power plants, demanding that these be decommissioned by 2030 at the latest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To shift to a low-carbon economy, the EU has been encouraging the deployment of variable renewable energy sources (VRE). However, VRE lack of competitiveness and their technical specificities have substantially raised the cost of the transition. Economic evaluations show that VRE life-cycle costs of electricity generation are still today higher than those of conventional thermal power plants. Member States have consequently adopted dedicated policies to support them. In addition, Ueckerdt et al. (2013) show that when integrated to the power system, VRE induce supplementary not-accounted-for costs. This paper first exposes the rationale of EU renewables goals, the EU targets and current deployment. It then explains why the LCOE metric is not appropriate to compute VRE costs by describing integration costs, their magnitude and their implications. Finally, it analyses the consequences for the power system and policy options. The paper shows that the EU has greatly underestimated VRE direct and indirect costs and that policymakers have failed to take into account the burden caused by renewable energy and the return of State support policies. Indeed, induced market distortions have been shattering the whole power system and have undermined competition in the Internal Energy Market. EU policymakers can nonetheless take full account of this negative trend and reverse it by relying on competition rules, setting-up a framework to collect robust EU-wide data, redesigning the architecture of the electricity system and relying on EU regulators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.