965 resultados para dynamic load balancing
Resumo:
The reverse time migration algorithm (RTM) has been widely used in the seismic industry to generate images of the underground and thus reduce the risk of oil and gas exploration. Its widespread use is due to its high quality in underground imaging. The RTM is also known for its high computational cost. Therefore, parallel computing techniques have been used in their implementations. In general, parallel approaches for RTM use a coarse granularity by distributing the processing of a subset of seismic shots among nodes of distributed systems. Parallel approaches with coarse granularity for RTM have been shown to be very efficient since the processing of each seismic shot can be performed independently. For this reason, RTM algorithm performance can be considerably improved by using a parallel approach with finer granularity for the processing assigned to each node. This work presents an efficient parallel algorithm for 3D reverse time migration with fine granularity using OpenMP. The propagation algorithm of 3D acoustic wave makes up much of the RTM. Different load balancing were analyzed in order to minimize possible losses parallel performance at this stage. The results served as a basis for the implementation of other phases RTM: backpropagation and imaging condition. The proposed algorithm was tested with synthetic data representing some of the possible underground structures. Metrics such as speedup and efficiency were used to analyze its parallel performance. The migrated sections show that the algorithm obtained satisfactory performance in identifying subsurface structures. As for the parallel performance, the analysis clearly demonstrate the scalability of the algorithm achieving a speedup of 22.46 for the propagation of the wave and 16.95 for the RTM, both with 24 threads.
Resumo:
This study proposes a solution responsible for scheduling data processing with variable demand in cloud environments. The system built check specific variables to the business context of a company incubated at Digital Metropole Institute of UFRN. Such a system generates an identification strategy machinery designs available in a cloud environment, focusing on processing performance, using data load balancing strategies and activities of parallelism in the software execution flow. The goal is to meet the seasonal demand within a standard time limit set by the company, controlling operating costs by using cloud services in the IaaS layer.
Resumo:
L'elaborato tratta il ruolo del porto di Ravenna nell'import/export di prodotti ortofrutticoli. Dopo una accurata analisi dei dati, lo studio delle rotte marittime e l'uso di Dbms per gestire un database complesso, si propone un modello di programmazione lineare intera su un problema di ship routing, ship scheduling e full ship-load balancing. L'obiettivo è di massimizzare il profitto derivante da un prezzo di vendita e soggetto ai vari costi della logistica. Il modello sceglie la rotta ottimale da effettuare, in termini di ordine di visita dei vari porti che hanno un import e un export dei prodotti studiati. Inoltre, è in grado di gestire lo scorrere del tempo, fornendo come soluzione il giorno ottimale di visita dei vari porti considerati. Infine, trova la ripartizione ottima del numero di container a bordo della nave per ogni tipologia di prodotto.
Resumo:
Secure transmission of bulk data is of interest to many content providers. A commercially-viable distribution of content requires technology to prevent unauthorised access. Encryption tools are powerful, but have a performance cost. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Two technical solutions make it possible to perform bulk transmissions while retaining security without too high a performance overhead. These are: 1. a) hierarchical encryption - the stronger the encryption, the harder it is to break but also the more computationally expensive it is. A hierarchical approach to key exchange means that simple and relatively weak encryption and keys are used to encrypt small chunks of data, for example 10 seconds of video. Each chunk has its own key. New keys for this bottom-level encryption are exchanged using a slightly stronger encryption, for example a whole-video key could govern the exchange of the 10-second chunk keys. At a higher level again, there could be daily or weekly keys, securing the exchange of whole-video keys, and at a yet higher level, a subscriber key could govern the exchange of weekly keys. At higher levels, the encryption becomes stronger but is used less frequently, so that the overall computational cost is minimal. The main observation is that the value of each encrypted item determines the strength of the key used to secure it. 2. b) non-symbolic fragmentation with signal diversity - communications are usually assumed to be sent over a single communications medium, and the data to have been encrypted and/or partitioned in whole-symbol packets. Network and path diversity break up a file or data stream into fragments which are then sent over many different channels, either in the same network or different networks. For example, a message could be transmitted partly over the phone network and partly via satellite. While TCP/IP does a similar thing in sending different packets over different paths, this is done for load-balancing purposes and is invisible to the end application. Network and path diversity deliberately introduce the same principle as a secure communications mechanism - an eavesdropper would need to intercept not just one transmission path but all paths used. Non-symbolic fragmentation of data is also introduced to further confuse any intercepted stream of data. This involves breaking up data into bit strings which are subsequently disordered prior to transmission. Even if all transmissions were intercepted, the cryptanalyst still needs to determine fragment boundaries and correctly order them. These two solutions depart from the usual idea of data encryption. Hierarchical encryption is an extension of the combined encryption of systems such as PGP but with the distinction that the strength of encryption at each level is determined by the "value" of the data being transmitted. Non- symbolic fragmentation suppresses or destroys bit patterns in the transmitted data in what is essentially a bit-level transposition cipher but with unpredictable irregularly-sized fragments. Both technologies have applications outside the commercial and can be used in conjunction with other forms of encryption, being functionally orthogonal.
Resumo:
A replicação de base de dados tem como objectivo a cópia de dados entre bases de dados distribuídas numa rede de computadores. A replicação de dados é importante em várias situações, desde a realização de cópias de segurança da informação, ao balanceamento de carga, à distribuição da informação por vários locais, até à integração de sistemas heterogéneos. A replicação possibilita uma diminuição do tráfego de rede, pois os dados ficam disponíveis localmente possibilitando também o seu acesso no caso de indisponibilidade da rede. Esta dissertação baseia-se na realização de um trabalho que consistiu no desenvolvimento de uma aplicação genérica para a replicação de bases de dados a disponibilizar como open source software. A aplicação desenvolvida possibilita a integração de dados entre vários sistemas, com foco na integração de dados heterogéneos, na fragmentação de dados e também na possibilidade de adaptação a várias situações. ABSTRACT: Data replication is a mechanism to synchronize and integrate data between distributed databases over a computer network. Data replication is an important tool in several situations, such as the creation of backup systems, load balancing between various nodes, distribution of information between various locations, integration of heterogeneous systems. Replication enables a reduction in network traffic, because data remains available locally even in the event of a temporary network failure. This thesis is based on the work carried out to develop an application for database replication to be made accessible as open source software. The application that was built allows for data integration between various systems, with particular focus on, amongst others, the integration of heterogeneous data, the fragmentation of data, replication in cascade, data format changes between replicas, master/slave and multi master synchronization.
Resumo:
The weight-transfer effect, consisting of the change in dynamic load distribution between the front and the rear tractor axles, is one of the most impairing phenomena for the performance, comfort, and safety of agricultural operations. Excessive weight transfer from the front to the rear tractor axle can occur during operation or maneuvering of implements connected to the tractor through the three-point hitch (TPH). In this respect, an optimal design of the TPH can ensure better dynamic load distribution and ultimately improve operational performance, comfort, and safety. In this study, a computational design tool (The Optimizer) for the determination of a TPH geometry that minimizes the weight-transfer effect is developed. The Optimizer is based on a constrained minimization algorithm. The objective function to be minimized is related to the tractor front-to-rear axle load transfer during a simulated reference maneuver performed with a reference implement on a reference soil. Simulations are based on a 3-degrees-of-freedom (DOF) dynamic model of the tractor-TPH-implement aggregate. The inertial, elastic, and viscous parameters of the dynamic model were successfully determined through a parameter identification algorithm. The geometry determined by the Optimizer complies with the ISO-730 Standard functional requirements and other design requirements. The interaction between the soil and the implement during the simulated reference maneuver was successfully validated against experimental data. Simulation results show that the adopted reference maneuver is effective in triggering the weight-transfer effect, with the front axle load exhibiting a peak-to-peak value of 27.1 kN during the maneuver. A benchmark test was conducted starting from four geometries of a commercially available TPH. As result, all the configurations were optimized by above 10%. The Optimizer, after 36 iterations, was able to find an optimized TPH geometry which allows to reduce the weight-transfer effect by 14.9%.
Resumo:
Nel seguente documento di tesi lo scopo della tecnologia blockchain è quello di creare un’architettura sicura per gli scambi di utility token basata su un sistema distribuito, ovvero un insieme eterogeneo formato da più calcolatori che appare all’utilizzatore come un unico dispositivo. Questa tesi descrive la progettazione e realizzazione di una rete blockchain Stellar permissioned capace di gestire transazioni di token applicabile a innumerevoli contesti all’interno di un ecosistema di pagamenti e di servizi. La tecnologia blockchain offre molteplici vantaggi tra cui la possibilità di diminuire le commissioni delle transazioni rispetto agli attuali sistemi di pagamento. L’architettura dell’infrastruttura di rete progettata prevede, oltre ai nodi della rete blockchain vera e propria, altri server che si occupano in particolare di offrire un servizio di database di custodia delle chiavi, un servizio di load balancing ed un servizio di accesso ai dati presenti nella rete tramite chiamate API fornite dai nodi Horizon. Oltre a questi è stato creato un elemento ad-hoc, ovvero il software BTKL, utilizzato per semplificare la comunicazione con la blockchain e per incrementare la sicurezza di comunicazione con il database di custodia.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.
Resumo:
The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.
Resumo:
Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.
Resumo:
The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models
Resumo:
In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. S pecial emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonline ar model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirem ents is analysed.
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
The purpose of this study was to investigate the effects of three different weight training protocols, that varied in the way training volume was measured, on acute muscular fatigue. Ten resistance-trained males performed all three protocols which involved dynamic constant resistance exercise of the elbow flexors. Protocol A provided a standard for the time the muscle group was under tension (TUT) and volume load (VL), expressed as the product of the total number of repetitions and the load that was lifted. Protocol B involved 40% of the TUT but the same VL compared to protocol A; protocol C was equated with protocol A for TUT but only involved 50% of the VL. Fatigue was assessed by changes in maximum voluntary isometric force and integrated electromyography (iEMG) between the pre- and post-training protocols. The results of the study showed that, when equated for VL, greater TUT produced greater overall muscular fatigue ( p