895 resultados para discriminant analysis and cluster analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Onsite wastewater treatment systems aim to assimilate domestic effluent into the environment. Unfortunately failure of such systems is common and inadequate effluent treatment can have serious environmental implications. The capacity of a particular soil to treat wastewater will change over time. The physical properties influence the rate of effluent movement through the soil and its chemical properties dictate the ability to renovate effluent. A research project was undertaken to determine the role that physical and chemical soil properties play in predicting the long-term behaviour of soil under effluent irrigation and to determine if they have a potential function as early indicators of adverse effects of effluent irrigation on treatment sustainability. Principal Component Analysis (PCA) and Cluster Analysis grouped the soils independently of their soil classifications and allowed us to distinguish the most suitable soils for sustainable long term effluent irrigation and determine the most influential soil parameters to characterise them. Multivariate analysis allowed a clear distinction between soils based on the cation exchange capacities. This in turn correlated well with the soil mineralogy. Mixed mineralogy soils in particular sodium or magnesium dominant soils are the most susceptible to dispersion under effluent irrigation. The soil Exchangeable Sodium Percentage (ESP) was identified as a crucial parameter and was highly correlated with percentage clay, electrical conductivity, exchangeable sodium, exchangeable magnesium and low Ca:Mg ratios (less than 0.5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bove, Pervan, Beatty, and Shiu [Bove, LL, Pervan, SJ, Beatty, SE, Shiu, E. Service worker role in encouraging customer organizational citizenship behaviors. J Bus Res 2009;62(7):698–705.] develop and test a latent variable model of the role of service workers in encouraging customers' organizational citizenship behaviors. However, Bove et al. [Bove, LL, Pervan, SJ, Beatty, SE, Shiu, E. Service worker role in encouraging customer organizational citizenship behaviors. J Bus Res 2009;62(7):698–705.] claim support for hypothesized relationships between constructs that, due to insufficient discriminant validity regarding certain constructs, may be inaccurate. This research comment discusses what discriminant validity represents, procedures for establishing discriminant validity, and presents an example of inaccurate discriminant validity assessment based upon the work of Bove et al. [Bove, LL, Pervan, SJ, Beatty, SE, Shiu, E. Service worker role in encouraging customer organizational citizenship behaviors. J Bus Res 2009;62(7):698–705.]. Solutions to discriminant validity problems and a five-step procedure for assessing discriminant validity then conclude the paper. This comment hopes to motivate a review of discriminant validity issues and offers assistance to future researchers conducting latent variable analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation reports the results of a study that examined differences between genders in a sample of adolescents from a residential substance abuse treatment facility. The sample included 72 males and 65 females, ages 12 through 17. The data were archival, having been originally collected for a study of elopement from treatment. The current study included 23 variables. The variables were from multiple dimensions, including socioeconomic, legal, school, family, substance abuse, psychological, social support, and treatment histories. Collectively, they provided information about problem behaviors and psychosocial problems that are correlates of adolescent substance abuse. The study hypothesized that these problem behaviors and psychosocial problems exist in different patterns and combinations between genders.^ Further, it expected that these patterns and combinations would constitute profiles important for treatment. K-means cluster analysis identified differential profiles between genders in all three areas: problem behaviors, psychosocial problems, and treatment profiles. In the dimension of problem behaviors, the predominantly female group was characterized as suicidal and destructive, while the predominantly male group was identified as aggressive and low achieving. In the dimension of psychosocial problems, the predominantly female group was characterized as abused depressives, while the male group was identified as asocial, low problem severity. A third group, neither predominantly female or male, was characterized as social, high problem severity. When these dimensions were combined to form treatment profiles, the predominantly female group was characterized as abused, self-harmful, and social, and the male group was identified as aggressive, destructive, low achieving, and asocial. Finally, logistic regression and discriminant analysis were used to determine whether a history of sexual and physical abuse impacted problem behavior differentially between genders. Sexual abuse had a substantially greater influence in producing self-mutilating and suicidal behavior among females than among males. Additionally, a model including sexual abuse, physical abuse, low family support, and low support from friends showed a moderate capacity to predict unusual harmful behavior (fire-starting and cruelty to animals) among males. Implications for social work practice, social work research, and systems science are discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic variation in plants can be evaluated by morphological characterization using visual attributes. Fruits have been the major descriptors for identification of different varieties of fruit crops. However, even in their absence, farmers, breeders and interested stakeholders require to distinguish between different mango varieties. This study aimed at determining diversity in mango germplasm from the Upper Athi River (UAR) and providing useful alternative descriptors for the identification of different mango varieties in the absence of fruits. A total of 20 International Plant Genetic Resources Institute (IPGRI) descriptors for mango were selected for use in the visual assessment of 98 mango accessions from 15 sites of the UAR region of eastern Kenya. Purposive sampling was used to identify farmers growing diverse varieties of mangoes. Evaluation of the descriptors was performed on-site and the data collected were then subjected to multivariate analysis including Principal Component Analysis (PCA) and Cluster analysis, one- way analysis of variance (ANOVA) and Chi square tests. Results classified the accessions into two major groups corresponding to indigenous and exotic varieties. The PCA showed the first six principal components accounting for 75.12% of the total variance. A strong and highly significant correlation was observed between the color of fully grown leaves, leaf blade width, leaf blade length and petiole length and also between the leaf attitude, color of young leaf, stem circumference, tree height, leaf margin, growth habit and fragrance. Useful descriptors for morphological evaluation were 14 out of the selected 20; however, ANOVA and Chi square test revealed that diversity in the accessions was majorly as a result of variations in color of young leaves, leaf attitude, leaf texture, growth habit, leaf blade length, leaf blade width and petiole length traits. These results reveal that mango germplasm in the UAR has significant diversity and that other morphological traits apart from fruits can be useful in morphological characterization of mango.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon and nitrogen stable isotope values were determined in Pacific white shrimp (Litopenaeus vannamei) with the objective of discriminating animals produced through aquaculture practices from those extracted from the wild. Farmed animals were collected at semi-intensive shrimp farms in Mexico and Ecuador. Fisheries-derived shrimps were caught in different fishing areas representing two estuarine systems and four open sea locations in Mexico and Ecuador. Carbon and nitrogen stable isotope values (13CVPDB and 15NAIR) allowed clear differentiation of wild from farmed animals. 13CVPDB and 15NAIR values in shrimps collected in the open sea were isotopically enriched (−16.99‰ and 11.57‰), indicating that these organisms belong to higher trophic levels than farmed animals. 13CVPDB and 15NAIR values of farmed animals (−19.72‰ and 7.85‰, respectively) partially overlapped with values measured in animals collected in estuaries (−18.46‰ and 5.38‰, respectively). Canonical discriminant analysis showed that when used separately and in conjunction, 13CVPDB and I5NAIR values were powerful discriminatory variables and demonstrate the viability of isotopic evaluations to distinguish wild-caught shrimps from aquaculture shrimps. Methodological improvements will define a verification tool to support shrimp traceability protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils formed in high mountainous regions in southern Brazil are characterized by great accumulation of organic matter (OM) in the surface horizons and variation in the degree of development. We hypothesized that soil properties and genesis are influenced by the interaction of parent materials and climate factors, which differ depending on the location along the altitudinal gradient. The goal of this study was to characterize and classify the soil, evaluate soil distribution, and determine the interactive effects of soil-forming factors in the subtropical mountain regions in Santa Catarina state. Soil samples were collected in areas known for wine production, for a total of 38 modal profiles. Based on morphological, physical, and chemical properties, soils were evaluated for pedogenesis and classified according to the Brazilian System of Soil Classification, with equivalent classes in the World Reference Basis (WRB). The results indicated that pedogenesis was strongly influenced by the parent material, weather, and relief. In the areas where basic effusive rocks (basalt) were observed, there was formation of extensive areas of clayey soils with reddish color and higher iron oxide contents. There was a predominance of Nitossolos Vermelhos and Háplicos (Nitisols), Latossolos Vermelhos (Ferralsols), and Cambissolos Háplicos (Cambisols), highlighting the pedogenetic processes of eluviation, illuviation of clay, and latosolization in conditions of year-long, large-volume, well-distributed rainfall and stability of land forms. In areas with acid effusive rocks (rhyodacites), medial or clayey soils were observed with lower iron oxide content, invariably acidic, and with low base content. For these soils, relief promoted substantial removal of material, resulting in intense rejuvenation, with a predominance of Cambissolos Háplicos (Cambisols) and lesser occurrence of Nitossolos Brunos (Nitisols) and Neossolos Litólicos (Leptosols). Soils formed from sedimentary rocks also tended to be more acidic, but with higher sand content, and the soils identified were Cambissolos Háplicos and Húmicos (Cambisols). Cluster analysis separated the soil profiles into three groups: the first and largest was formed by profiles originating from sedimentary rocks and rhyodacites; the second, smaller group was formed by four profiles in the Água Doce region (acidic rocks); and the third was formed by profiles derived from basalt. Discriminant analysis was effective in grouping soil classes. Thus, the study highlighted the importance of geology in the formation of soils in this landscape associated with climate and relief.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to translate the Structured Clinical Interview for Mood Spectrum into Brazilian Portuguese, measuring its reliability, validity, and defining scores for bipolar disorders. METHOD: Questionnaire was translated (into Brazilian Portuguese) and back-translated into English. Sample consisted of 47 subjects with bipolar disorder, 47 with major depressive disorder, 18 with schizophrenia and 22 controls. Inter-rater reliability was tested in 20 subjects with bipolar disorder and MDD. Internal consistency was measured using the Kuder Richardson formula. Forward stepwise discriminant analysis was performed. Scores were compared between groups; manic (M), depressive (D) and total (T) threshold scores were calculated through receiver operating characteristic (ROC) curves. RESULTS: Kuder Richardson coefficients were between 0.86 and 0.94. Intraclass correlation coefficient was 0.96 (CI 95 % 0.93-0.97). Subjects with bipolar disorder had higher M and T, and similar D scores, when compared to major depressive disorder (ANOVA, p < 0.001). The sub-domains that best discriminated unipolar and bipolar subjects were manic energy and manic mood. M had the best area under the curve (0.909), and values of M equal to or greater than 30 yielded 91.5% sensitivity and 74.5% specificity. CONCLUSION: Structured Clinical Interview for Mood Spectrum has good reliability and validity. Cut-off of 30 best differentiates subjects with bipolar disorder vs. unipolar depression. A cutoff score of 30 or higher in the mania sub-domain is appropriate to help make a distinction between subjects with bipolar disorder and those with unipolar depression.