990 resultados para differential-pulse polarography


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The voltammetric reduction of acetaldehyde was studied in 0.1 M LiOH: LiCl (60: 40 v/v). Welldefined waves can be seen at -1.77 and -1.60 V with the use of hanging mercury and glassy carbon electrodes. Acetaldehyde was shown to react at room temperature with the 2,4-dinitrophenylhydrazine and the product exhibited a differential pulse voltammetric peak at -0.90V, which was well separated from the peaks of the derivative. This allowed the indirect determination of acetaldehyde in the presence of 0.1 M ethanol/tetrabutylammonium perchlorate after 10 min of reaction. Calibration graphs were obtained for 1.00 x 10(-6)-1.00 x 10(-4) M of acetaldehyde. The detection limit is 8.14 x 10(-7) M. The method has been applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pretreatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primaquine, an antimalarial drug, presents a well-defined oxidation peak around +0.6V vs SCE at a glassy carbon electrode that can be used for its determination. Calibration graphs were obtained for primaquine in B-R buffer pH 4.0 from 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using linear-scan voltammetry and 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using differential pulse or square-wave voltammetry. The correspondent detection limits was 9.4 mu g mL(-1); 4.2 and 1.8 mu g mL(-1), respectively. All the voltammetric methods were applied with success in direct determination of the primaquine in commercial tablets without separation or extraction procedures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The [Ru(NH3)5(H2O)]2+ and trans-[Ru(NH3)4SO2(H2O)]2+ complexes ions were immobilized on poly(4-vinylpyridine) (4-PVP) through reactions in aqueous solutions. The stability of the imobilized complexes was checked in aqueous solution in the pH 2.0-8.0 range. The number of pyridinic nitrogens in the polymer 4-PVP is 2.80±0.05 mmol/g according to nitrogen elemental analysis. Potentiometric titration experiments showed that the accessible nitrogen, in aqueous medium, was 0.94±0.02 mmol/g with a p Ka value of 7.4±0.2. In addition, ruthenium and sulfate analysis has demonstrated that about 15% of the accessible nitrogen sites are able to coordinate to the metal centers. The characterization of the immobilized complexes was made through diffuse electronic and infrared spectroscopies and differential pulse and cyclic voltammetries. © 1993 Plenum Publishing Corporation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chagas' disease is a serious health problem for Latin America. The situation is worsened by the lack of efficient chemotherapy. The two available commercial drugs, benznidazole and nifurtimox, are more effective in the acute phase of the disease. Nitrofurazone is active against Trypanosoma cruzi, however its high toxicity precludes its current use in parasitosis. Hydroxymethylnitrofurazone is a prodrug of nitrofurazone. It is more active against Trypanosoma cruzi than nitrofurazone, besides being less toxic. This work shows the voltammetric behavior of nitrofurazone and a comparison with those of metronidazole and chloramphenicol using cyclic, linear sweep and differential pulse voltammetries. For these drugs also the prediction of the diffusion coefficients using Wilke-Chang equation was performed. The reduction of nitrofurazone is pH-dependent and in acidic medium the hydroxylamine derivative, involving four electrons, is the principal product formed. In aqueous-alkaline medium and with a glassy carbon electrode pre-treatment the reduction of nitrofurazone occurs in two steps, the first involving one electron to form the nitro-radical anion and the second corresponding to the hydroxylamine derivative formation. Hydroxymethylnitrofurazone presented the same voltammetric behavior and electroactivity, indicating that the molecular modification performed in nitrofurazone did not change its capacity to be reduced. A brief discussion regarding the differences in biological activity between the two compounds is also presented. ©2005 Sociedade Brasileira de Química.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of diloxanide furoate (DF) in acetonitrile on glassy carbon electrode was studied in this work. It was observed that DF is reduced after a reversible one-electron transfer followed by an irreversible chemical reaction, diagnosed as C-Cl bond cleavage. Its reduction was followed by linear (LSV), differential pulse (DPV) and square wave voltammetry (SWV). Analytical curves were obtained for DF determination using all the investigated voltammetric techniques. For LSV was obtained a linear range (LR) from 5.0 × 10-4 to 1.0 × 10-2 mol L-1, with detection limit (DL) of 1.5 × 10-4 mol L-1 and sensitivity (S) of 2.1 × 104 μA mol-1 L. The analytical parameters obtained by DPV were: LR = 5.0 × 10-4 to 2.2 × 10-3 mol L-1, DL = 7.8 × 10-5 mol L-1, S = 3.7 × 104 μA mol-1 L. For SWV were obtained a LR = 7.5 × 10-6 to 1.2 × 10 -3 mol L-1, DL = 5.5 × 10-6 mol L -1 and S = 2.8 × 105 μA mol-1 L. Thus, the SWV was the most sensible technique, which can be used for DF determination at low concentration levels. Statistics methods were used to evaluate the analytical procedure, where recovery around to 100% was obtained for all voltammetric techniques. Relative standard deviations were lower than 5.0% (N=5). The obtained t values evaluating all the three voltammetric methods were less than the tabulated ones, indicating that there are no evidences of systematic error. ©2005 Sociedade Brasileira de Química.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mercury-sensitive chemically modified graphite paste electrode was constructed by incorporating modified silica gel into a conventional graphite paste electrode. The functional group attached to the (3-chloropropyl) silica gel surface was 2-mercaptoimidazole, giving a new product denoted by 3-(2-thioimidazolyl)propyl silica gel, which is able to complex mercury ions. Mercury was chemically adsorbed on the modified graphite paste electrode containing 3-(2-thioimidazolyl)propyl silica (TIPSG GPE) by immersion in a Hg(II) solution, and the resultant surface was characterized by cyclic and differential pulse anodic stripping voltammetry. One cathodic peak at 0.1 V and other anodic peak at 0.34 V were observed on scanning the potential from -0.1 to 0.8 V (0.01 M KNO3; ν = 2.0 mV s-1 νs. Ag/AgCl). The anodic peak at 0.34 V show an excellent sensitivity for Hg(II) ions in the presence of several foreign ions. A calibration graph covering the concentration range from 0.02 to 2 mg L-1 was obtained. The detection limit was estimated to be 5 μg L-1. The precision for six determinations of 0.05 and 0.26 mg L-1 Hg(II) was 3.0 and 2.5% (relative standard deviation), respectively. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal. 2005 © The Japan Society for Analytical Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organo-clay complex of ligand-hexadecyltrimethylammonium with montmorillonite was made for the purpose of application as a preconcentration agent in a chemically modified carbon paste electrode for determination of mercury (II) in aqueous solution. It was found out that the adsorption of Hg(II) by organo-clay complex is independent of the pH of the solution. It was also found out that the adsorption of the remaining metals Cd(II), Ps(II), Cu(II), Zn(II), and Ni(II) was dependent on the changes in pH solutions and increased when it varies from 1 to 8. The resultant material was characterized by cyclic and differential pulse anodic voltammetry using a modified graphite paste electrode in different supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, possible interferences and other variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A poly glutamic acid film modified electrode exhibited a catalytic response toguanosine oxidation potential and higher peak current value. Linear concentration curve was obtained in the concentration interval of 1.0 a 10.0 μmol L-1 in 0.04 mol L-1 B-R buffer pH 2.0 with a detection limit of 0.198 μmol L-1. The electrode was used for the determination of guanosine in the potential of +1.1 V (vs. Ag/AgCl) using differential pulse voltammetry (DPV) at urine sample with good recovery. © 2010 by CEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A voltammetric method for the determination of ethyl acetate in ethanol fuel using a Fe3+/Nafion®-coated glassy carbon electrode (GCE) is proposed. The ethyl acetate present in the ethanol fuel was previously converted to acetohydroxamic acid via pretreatment with hydroxylamine chloride. The acetohydroxamic acid promptly reacted with the iron (III) present in the film, producing iron (III) acetohydroxamate, which presents a well-defined voltammetric peak current at -0.02 V. Optimization of the voltammetric parameters for the cyclic, linear sweep, square wave, and differential pulse modalities was carried out for this chemically-modified electrode. Square wave voltammetry afforded the best response for acetohydroxamic acid detection. The analytical curve for this species was linear from 9 to 100 μmol L 1 according to the following equation: ip (μA) = 0.27 + 2.55Cacetohydroxamic acid (μmol L 1), with linear correlation coefficient equal to 0.993. The technique presented limit of detection equal to 5.3 μmol L 1 and quantification limit of 17.6 μmol L 1. The proposed method was compared to the official method of ethyl acetate analysis (Gas Chromatography), and a satisfactory correlation was found between these techniques. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrazinamide (Pyrazinecarboxamide-PZA) is a drug that is used to treatment tuberculosis. In the present work, the voltammetric behavior of PZA was studied using a screen-printed modified electrode (SPCE). The modified electrode was constructed using poly-histidine films, and it showed an electrocatalytic effect, thus promoting a decrease in PZA reduction potential and improving the voltammetric response. Cyclic voltammetry and electrochemical impedance spectroscopy techniques have been employed in order to elucidate of the electrodic reaction. The results allowed the proposal that in the PZA reduction, a further chemical reaction occurs that corresponds to a second-order process which is subsequent to the electrode reaction. In addition, a sensitive voltammetric method was developed, and it was successfully applied for PZA determination in human urine samples. The best response was found using SPCE modified with poly-histidine prepared by histidine monomer electropolymerization (SPCE/EPH). The electroanalytical performance of the SPCE/EPH was investigated by linear sweep (LSV), differential pulse (DPV), and square wave voltammetry (SWV). A linear relationship between peak current and PZA concentrations was obtained from 9.0 × 10-7 to 1.0 × 10-4 mol L-1 by using DPV. The limit of detection at 5.7 × 10 -7 mol L-1 was estimated, and a relative standard deviation of the 5.0 × 10-6 mol L-1 of PZA of 10 measurement was 3.7%. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sugar is widely consumed worldwide and Brazil is the largest producer, consumer, and exporter of this product. To guarantee proper development and productivity of sugar cane crops, it is necessary to apply large quantities of agrochemicals, especially herbicides and pesticides. The herbicide tebuthiuron (TBH) prevents pre- and post-emergence of infesting weed in sugarcane cultures. Considering that it is important to ensure food safety for the population, this paper proposes a reliable method to analyse TBH in sugar matrixes (brown and crystal) using square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at bare glassy carbon electrode and investigate the electrochemical behavior of this herbicide by cyclic voltammetry (CV). Our results suggest that TBH or the product of its reaction with a supporting electrolyte is oxidized through irreversible transfer of one electron between the analyte and the working electrode, at a potential close to +1.16 V vs. Ag |AgClsat in 0.10 mol L-1 KOH as supporting electrolyte solution. Both DPV and SWV are satisfactory for the quantitative analysis of the analyte. DPV is more sensitive and selective, with detection limits of 0.902, 0.815 and 0.578 mg kg-1, and quantification limits of 0.009, 0.010 and 0.008 mg kg-1 in the absence of the matrix and in the presence of crystal and brown sugar matrix, respectively. Repeatability lay between 0.53 and 13.8%, precision ranged between 4.14 and 15.0%, and recovery remained between 84.2 and 113% in the case of DPV conducted in the absence of matrix and in the presence of the crystal sugar matrix, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procymidone, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to apple crops. In this work, we propose a reliable and sensitive method to determine procymidone in Brazilian apples. The method involves differential pulse (DPV) and square-wave voltammetry (SWV) techniques on a glassy carbon electrode. In a supporting electrolyte solution of 0.5 mol L−1 NaOH, procymidone undergoes an irreversible one-electron oxidation at +1.42 V by cyclic voltammetric vs. Ag|AgCl, KCl 3 M reference electrode. The proposed DPV and SWV methods have a good linear response in the 8.00–20.0 mg L−1 range, with limits of detection (LOD) of 0.678 and 0.228 mg L−1, respectively, in the absence of the matrix. We obtained improved LOD (0.097 mg L−1) in the presence of apple matrix and the supporting electrolyte solution. We used three commercial apple samples to evaluate recovery, and we achieved recovery percentages ranging from 94.6 to 110 % for procymidone determinations. We also tested the proposed voltammetric method for reproducibility, repeatability, and potential interferents, and the results were satisfactory for electroanalytical purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).