968 resultados para deep-water corals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-water coral ecosystems are hot spots of biodiversity and provide habitats and refuges for several deep-sea species. However, their role in shaping the biodiversity of the surrounding open slopes is still poorly known. We investigated how meiofaunal biodiversity varies with and is related to the occurrence of deep-water living scleractinian corals and coral rubble in two deep-sea areas (the Rockall Bank, northeastern Atlantic) and the Santa Maria di Leuca (central Mediterranean). In both areas, replicated sampling on alive and dead coral areas and from the adjacent slope sediments without corals (at the same and increasing depths) allowed us to demonstrate that sediments surrounding the living corals and coral rubble were characterised by higher meiofaunal biodiversity (as number of higher taxa, and nematode species richness) than the slope sediments. Despite the soft sediments surrounding the living coral having a higher nutritional value than those not associated with corals, with the opposite seen for coral rubble, the presence of both alive and dead corals had a significant effect on nematode assemblages. Our data suggest that, due particularly to the effects on habitat heterogeneity/complexity, both living coral and coral rubble promoted higher biodiversity levels than in surrounding slope sediments. We conclude that the protection of deep-water corals can be crucial to preserve the biodiversity of surrounding open slopes, and that the protection of dead corals, a so-far almost neglected habitat in terms of biological conservation, can further contribute to the maintenance of a high deep-sea biodiversity along continental margins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals (CWC) are frequently reported from deep sites with locally accelerated currents that enhance seabed food particle supply. Moreover, zooplankton likely account for ecologically important prey items, but their contribution to CWC diet remains unquantified. We investigated the benthic food web structure of the recently discovered Santa Maria di Leuca (SML) CWC province (300 to 1100 m depth) located in the oligotrophic northern Ionian Sea. We analyzed stable isotopes (delta13C and delta15N) of the main consumers (including ubiquitous CWC species) exhibiting different feeding strategies, zooplankton, suspended particulate organic matter (POM) and sedimented organic matter (SOM). Zooplankton and POM were collected 3 m above the coral colonies in order to assess their relative contributions to CWC diet. The delta15N of the scleractinians Desmophyllum dianthus, Madrepora oculata and Lophelia pertusa and the gorgonian Paramuricea cf. macrospinawere consistent with a diet mainly composed of zooplankton. The antipatharian Leiopathes glaberrima was more 15N- depletedthan other cnidarians, suggesting a lower contribution of zooplankton to its diet. Our delta13C data clearly indicate that the benthic food web of SML is exclusively fuelled by carbon of phytoplanktonic origin. Nevertheless, consumers feeding at the water sediment interface were more 13C-enriched than consumers feeding above the bottom (i.e. living corals and their epifauna). This pattern suggests that carbon is assimilated via 2 trophic pathways: relatively fresh phytoplanktonic production for 13C-depleted consumers and more decayed organic matter for 13C-enriched consumers. When the delta13C values of consumers were corrected for the influence of lipids (which are significantly 13C-depleted relative to other tissue components), our conclusions remained unchanged, except in the case of L. glaberrima which could assimilate a mixture of zooplankton and resuspended decayed organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions, calcification rates ranged between -0.01 and 0.23% d-1. Calcification rates of M. oculata under variable partial pressure of CO2 (pCO2) were the same for ambient and elevated pCO2 (404 and 867 µatm) with 0.06 ± 0.06% d-1, while calcification was 0.12 ± 0.06% d-1 when pCO2 was reduced to its pre-industrial level (285 µatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar (especialidade em Ecologia Marinha), 11 de Setembro de 2015, Universidade dos Açores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first data on chemical composition of nonreef-building non-zooxanthellate deep-sea corals presented in this publication allow us to identify following tendencies manifested in the biomineralization process. Comparison of concentration levels of some chemical elements in scleractinian corals and ambient ocean waters suggests that corals do not accumulate K in the process of biomineralization and weakly accumulate Mg, whereas Ca, Sr, Si, Al, Ti, Mn, Zn, Cu, Cd, Pb, and Fe are concentrated in skeletons of corals with enrichment coefficients of 10**3 to 10**7. Correlations between components contained in the skeletons of scleractinian corals suggest that the source of Al, Si, Fe, and Ti in them is the clayey constituent of bottom sediments and zooplankton, while trace elements are likely accumulated via bioassimilation from seawater. Such elements as Mn, Sr, Pb, and Cd can structurally substitute Ca in calcite and aragonite. Variations in concentrations of the elements in coral skeletons depending on their habitat depths are fairly significant. As could be expected Ca and Mg concentrations are prone to decrease with depth (R = -0.55 and -0.51, respectively), which can possibly be caused by partial dissolution of carbonate skeletons with increasing depth, whereas the Sr/Ca ratio does not depend on depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HERMES cold-water coral database is a combination of historical and published sclerectinia cold-water coral occurrences (mainly Lophelia pertusa) and new records of the HERMES project along the European margin. This database will be updated if new findings are reported. New or historical data can be sent to Ben De Mol (mailto:bendemol@ub.edu). Besides geocodes a second category indicates the coral species and if they are sampled alive or dead. If absolute dating is available of the corals this is provide together with the method. Only the framework building cold-water corals are selected: Lophelia pertusa, Madrepora oculata and common cold-water corals often associated with the framework builders like: Desmophyllum sp and Dendrophylia sp. in comments other observed corals are indicated. Another field indicates if the corals are part of a large build-up or solitary. A third category of parameters is referencing to the quality of the represented data. In this category are the following parameters indicated: source of reference, source type (such as Fishermen location, scientific paper, cruise reports). sample code and or name and sample type (e.g. rock dredge, grab, video line). These parameters must allow an assessment of the quality of the described parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our record of Younger Dryas intermediate-depth seawater D14C from North Atlantic deep-sea corals supports a link between abrupt climate change and intermediate ocean variability. Our data show that northern source intermediate water (~1700 m) was partially replaced by 14C-depleted southern source water at the onset of the event, consistent with a reduction in the rate of North Atlantic Deep Water formation. This transition requires the existence of large, mobile gradients of D14C in the ocean during the Younger Dryas. The D14C water column profile from Keigwin (2004) provides direct evidence for the presence of one such gradient at the beginning of the Younger Dryas (~12.9 ka), with a 100 per mil offset between shallow (<~2400 m) and deep water. Our early Younger Dryas data are consistent with this profile and also show a D14C inversion, with 35 per mil more enriched water at ~2400 m than at ~1700 m. This feature is probably the result of mixing between relatively well 14C ventilated northern source water and more poorly 14C ventilated southern source intermediate water, which is slightly shallower. Over the rest of the Younger Dryas our intermediate water/deepwater coral D14C data gradually increase, while the atmosphere D14C drops. For a very brief interval at ~12.0 ka and at the end of the Younger Dryas (11.5 ka), intermediate water D14C (~1200 m) approached atmospheric D14C. These enriched D14C results suggest an enhanced initial D14C content of the water and demonstrate the presence of large lateral D14C gradients in the intermediate/deep ocean in addition to the sharp vertical shift at ~2500 m. The transient D14C enrichment at ~12.0 ka occurred in the middle of the Younger Dryas and demonstrates that there is at least one time when the intermediate/deep ocean underwent dramatic change but with much smaller effects in other paleoclimatic records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as ?13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.