952 resultados para cutting angle method
Resumo:
We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace’s equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity.
Resumo:
A boundary integral equation is described for the prediction of acoustic propagation from a monofrequency coherent line source in a cutting with impedance boundary conditions onto surrounding flat impedance ground. The problem is stated as a boundary value problem for the Helmholtz equation and is subsequently reformulated as a system of boundary integral equations via Green's theorem. It is shown that the integral equation formulation has a unique solution at all wavenumbers. The numerical solution of the coupled boundary integral equations by a simple boundary element method is then described. The convergence of the numerical scheme is demonstrated experimentally. Predictions of A-weighted excess attenuation for a traffic noise spectrum are made illustrating the effects of varying the depth of the cutting and the absorbency of the surrounding ground surface.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
Simultaneous all angle collocations (SAACs) of microwave humidity sounders (AMSU-B and MHS) on-board polar orbiting satellites are used to estimate scan-dependent biases. This method has distinct advantages over previous methods, such as that the estimated scan-dependent biases are not influenced by diurnal differences between the edges of the scan and the biases can be estimated for both sides of the scan. We find the results are robust in the sense that biases estimated for one satellite pair can be reproduced by double differencing biases of these satellites with a third satellite. Channel 1 of these instruments shows the least bias for all satellites. Channel 2 has biases greater than 5 K, thus needs to be corrected. Channel 3 has biases of about 2 K and more and they are time varying for some of the satellites. Channel 4 has the largest bias which is about 15 K when the data are averaged for 5 years, but biases of individual months can be as large as 30 K. Channel 5 also has large and time varying biases for two of the AMSU-Bs. NOAA-15 (N15) channels are found to be affected the most, mainly due to radio frequency interference (RFI) from onboard data transmitters. Channel 4 of N15 shows the largest and time varying biases, so data of this channel should only be used with caution for climate applications. The two MHS instruments show the best agreement for all channels. Our estimates may be used to correct for scan-dependent biases of these instruments, or at least used as a guideline for excluding channels with large scan asymmetries from scientific analyses.
Resumo:
The objective of this study was to test a device developed to improve the functionality, accuracy and precision of the original technique for sweating rate measurements proposed by Schleger and Turner [Schleger AV, Turner HG (1965) Aust J Agric Res 16:92-106]. A device was built for this purpose and tested against the original Schleger and Turner technique. Testing was performed by measuring sweating rates in an experiment involving six Mertolenga heifers subjected to four different thermal levels in a climatic chamber. The device exhibited no functional problems and the results obtained with its use were more consistent than with the Schleger and Turner technique. There was no difference in the reproducibility of the two techniques (same accuracy), but measurements performed with the new device had lower repeatability, corresponding to lower variability and, consequently, to higher precision. When utilizing this device, there is no need for physical contact between the operator and the animal to maintain the filter paper discs in position. This has important advantages: the animals stay quieter, and several animals can be evaluated simultaneously. This is a major advantage because it allows more measurements to be taken in a given period of time, increasing the precision of the observations and diminishing the error associated with temporal hiatus (e.g., the solar angle during field studies). The new device has higher functional versatility when taking measurements in large-scale studies (many animals) under field conditions. The results obtained in this study suggest that the technique using the device presented here could represent an advantageous alternative to the original technique described by Schleger and Turner.
Resumo:
This paper addresses the one-dimensional cutting stock problem when demand is a random variable. The problem is formulated as a two-stage stochastic nonlinear program with recourse. The first stage decision variables are the number of objects to be cut according to a cutting pattern. The second stage decision variables are the number of holding or backordering items due to the decisions made in the first stage. The problem`s objective is to minimize the total expected cost incurred in both stages, due to waste and holding or backordering penalties. A Simplex-based method with column generation is proposed for solving a linear relaxation of the resulting optimization problem. The proposed method is evaluated by using two well-known measures of uncertainty effects in stochastic programming: the value of stochastic solution-VSS-and the expected value of perfect information-EVPI. The optimal two-stage solution is shown to be more effective than the alternative wait-and-see and expected value approaches, even under small variations in the parameters of the problem.
Resumo:
Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.
Resumo:
The most common control method Uses toxic baits consisted of dehydrated citrus pulp as carrier and attractant. However, the portion of the citrus fruit that is attractive to ants is still Unknown, despite its importance in chemical control. This study compared the attractiveness of different fruit parts of citrus pulps to Atta sexdens rubropilosa workers. Three treatments: pellets of industrial citrus pulp, albedo (mesocarp), and whole citrus pulp were offered randomly to ants and the removal of these substrates by workers was observed. Tie three pulps Were equally attractive to this species (F = 0.8033; p = 0.4633). Although the whole pulp included the epicarp, it was as attractive as the other treatments, possibly because, the material was heated during processing, eliminating any volatile substance that could repel ants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)