576 resultados para cortico-cerebellar
Resumo:
The binding of [3H]inositol hexakisphosphate ([3H] InsP6) to rat cerebellar membranes has been characterized with the objective of establishing the role, if any, of a membrane protein receptor. In the presence of EDTA, we have previously identified an InsP6-binding site with a capacity of approximately 20 pmol/mg protein (Hawkins, P. T., Reynolds, D. J. M., Poyner, D. R., and Hanley, M. R. (1990) Biochem. Biophys. Res. Commun. 167, 819-827). However, in the presence of 1 mM Mg2+, the capacity of [3H]InsP6 binding to membranes was increased approximately 9-fold. This enhancing effect of Mg2+ was reversed by addition of 10 microM of several cation chelators, suggesting that the increased binding required trace quantities of other metal cations. This is supported by experiments where it was possible to saturate binding by addition of excess membranes, despite not significantly depleting radioligand, pointing to removal of some other factor. Removal of endogenous cations from the binding assay by pretreatment with chelex resin also prevents the Mg(2+)-induced potentiation. Consideration of the specificity of the chelators able to abolish this potentiation suggested involvement of Fe3+ or Al3+. Both these ions (but not several others) were able to increase [3H]InsP6 binding to chelex-pretreated membranes at concentrations of 1 microM. It is possible to demonstrate synergy between Fe3+ and Mg2+ under these conditions. We propose that [3H]InsP6 may interact with membranes through non-protein recognition possibly via phospholipids, in a manner dependent upon trace metals. The implications of this for InsP6 biology are considered.
Resumo:
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.
Resumo:
The spatial patterns of the vacuolation ("spongiform change"), surviving cells, and prion protein (PrP) deposition were studied in the various cell laminae of the cerebellar cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Clustering of the histological features, with the clusters regularly distributed along the folia, was evident in all cell laminae. In the molecular layer, clusters of vacuoles coincided with the surviving Purkinje cells. In the granule cell layer, however, the spatial relationship between the vacuoles and surviving cells was more complex and varied between cases. PrP deposition was not spatially correlated with either the vacuoles or the surviving cells in any of the cerebellar laminae in the majority of cases. In some cases, there were spatial relationships between th histological features in the molecular and granule cell layers. The data suggest that degeneration of the cerebellar cortex in sCJD may occur in a topographic pattern consistent with the spread of prion pathology along anatomical pathways. The development of the vacuolation may be an early stage of the pathology in the cerebellum preceding the appearance of the PrP deposits. In addition, there is evidence that the pathological changes may spread across the different laminae of the cerebellar cortex.
Resumo:
The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.
Resumo:
The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.
Resumo:
The direction of synaptic plasticity at the connection between parallel fibres (PFs) and Purkinje cells can be modified by PF stimulation alone. Strong activation (Hartell, 1996) or high frequency stimulation (Schreurs and Alkon, 1993) of PFs induced a long-term depression (LTD) of PF-mediated excitatory postsynaptic currents. Brief raised frequency molecular layer stimulation produced a cAMP-dependent long-temi potentiation (LTP) of field potential (FP) responses (Salin et al., 1998). Thin slices of cerebellar vermis were prepared from 14-21 day old male Wistar rats decapitated under Halothane anaesthesia. FP's were recorded from the Purkinje cell layer in response to alternate 0.2Hz activation of stimulating electrodes placed in the molecular layer. In the presence of picrotoxin, FPs displayed two tetrodotoxin-sensitive, negative-going components termed N1 and N2. EPs were graded responses with paired pulse facilitation and were selectively blocked by 101AM 6-cyano-7-nitroquinoxaline-2,3-dicne (CNQX) an antagonist at iy,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type ionotropic glutamate receptors (AMPAR) suggesting that they were primarily PE-mediated. The effects of raised stimulus intensity (RS) and/or increased frequency (IF) activation of the molecular layer on FP responses were examined. In sagittai and transverse slices combined RS and IF molecular layer activation induced a LTD of the N2 component of FP responses. RSIF stimulation produced fewer incidences of LTD in sagittal slices when an inhibitor of nitric oxide synthase (NOS), guanylate cyclase (GC), protein kinase G (PKG) or the GABAB receptor antagonist CGP62349 was included into the perfusion medium. Application of a nitric oxide (NO) donor, a cyclic guanosine monophosphate (cGMP) analogue or a phosphodiesterase (PDE) type V inhibitor to prevent cGMP breakdown paired with IF stimulation produced an acute depression, Raised frequency (RF) molecular layer stimulation produced a slowly emerging LTD of N2 in sagittal slices that was largely blocked in the presence of NOS, cGMP or PKG inhibitors. In transverse slices RE stimulation produced a LTP of the N2 component that was prevented by an inhibitor of protein kinase A or NOS. Inhibition of cGMP-signalling frequently revealed an underlying potentiation suggesting that cGMP activity might mask the effects of cAMP. In sagittal slices RE stimulation resulted in a potentiation of FPs when the cAMP-specific PDE type IV inhibitor rolipram was incorporated into the perfusion medium. In summary, raised levels of PE stimulation can alter the synaptic efficacy at PF-Purkinje cell synapses. The results provide support for a role of NO/cGMP/PKG signalling in the induction of LTD in the cerebellar cortex and suggest that activation of GABAa receptors might also be important. The level of cyclic nucleotide-specific PDE activities may be crucial in determining the level of cGMP and CAMP activity and hence the direction of synaptic plasticity.