959 resultados para componentwise ultimate bounds
Resumo:
The behaviour and design of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, is considered. The particular problem of the moment-capacity of such joints being lower than that of the cold-formed steel sections being connected because of web buckling, caused by the concentration of load transfer from the bolts, is addressed. In this paper, a combination of laboratory tests and finite element analyses is used to investigate this mode of failure. It is demonstrated that there is good agreement between the measured ultimate moment-capacity and that predicted by using the finite element method. A parametric study conducted using the finite element model shows that the moment-capacity of a practical size joint can be up to 20% lower than that of the cold-formed steel sections being connected. Web buckling so-caused must therefore be considered in the design of such connections. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The finite element method in conjunction with the Soutis-Fleck model is used to predict the residual strength after impact of a carbon-fibre reinforced plastic wingbox subjected to a cantilever type loading. The maximum stress failure criterion further validates the Soutis-Fleck model predictions. The Soutis-Fleck model predicts that the wingbox fails at a tip load of 99.2 kN, approximately 5.5% less than the experimental observation
Resumo:
This paper introduces some novel upper and lower bounds on the achievable sum rate of multiple-input multiple-output (MIMO) systems with zero-forcing (ZF) receivers. The presented bounds are not only tractable but also generic since they apply for different fading models of interest, such as uncorrelated/ correlated Rayleigh fading and Ricean fading. We further formulate a new relationship between the sum rate and the first negative moment of the unordered eigenvalue of the instantaneous correlation matrix. The derived expressions are explicitly compared with some existing results on MIMO systems operating with optimal and minimum mean-squared error (MMSE) receivers. Based on our analytical results, we gain valuable insights into the implications of the model parameters, such as the number of antennas, spatial correlation and Ricean-K factor, on the sum rate of MIMO ZF receivers. © 2011 IEEE.
Resumo:
This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems. © 2011 IEEE.
Resumo:
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) takes only O(n-vlog3/2n) messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartiten-node graph G in O(t(G)) time and O(t(G)n-vlog3/2n) messages, where t(G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficientdeterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that O(n-v) messages are needed for any O(1) time leader election algorithm which succeeds with high probability. It is also shown that O(n 1/3) messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) uses only O(√ √nlog<sup>3/2</sup>n) messages to elect a unique leader (with high probability). When considering the "explicit" variant of leader election where eventually every node knows the identity of the leader, our algorithm yields the asymptotically optimal bounds of O(1) rounds and O(. n) messages. This algorithm is then extended to one solving leader election on any connected non-bipartite n-node graph G in O(τ(. G)) time and O(τ(G)n√log<sup>3/2</sup>n) messages, where τ(. G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, we present an almost matching lower bound for randomized leader election, showing that Ω(n) messages are needed for any leader election algorithm that succeeds with probability at least 1/. e+. ε, for any small constant ε. >. 0. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
Several methods are available for predicting ultimate lateral load resistance of laterally loaded pile. These methods often produce significantly different ultimate lateral resistance. This makes it difficult to select an appropriate method in designing/predicting ultimate lateral resistance of pile. This paper presents a review of two different methods; Meyerh of and Patra & Pise for predicting lateral resistance of pile. Then, the predicted ultimate lateral resistances by these two methods are compared with the experimental results. It is found that Meyerhof's method gives better prediction for single pile with smaller L/d ratio whereas Patra & Pise method gives better predictions for pile groups with higher L/d. Thus, none of these methods can be applicable universally for all possible conditions. Also the parametric study on ultimate lateral resistance revealed that length to diameter ratio, pile spacing, pile configuration in a pile group are important parameters for prediction of lateral load resistance. © 2009 Taylor & Francis Group.
Resumo:
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy. © 2010 Elsevier Inc. All rights reserved.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.