925 resultados para complexity regularization
Resumo:
In wireless communications the transmitted signals may be affected by noise. The receiver must decode the received message, which can be mathematically modelled as a search for the closest lattice point to a given vector. This problem is known to be NP-hard in general, but for communications applications there exist algorithms that, for a certain range of system parameters, offer polynomial expected complexity. The purpose of the thesis is to study the sphere decoding algorithm introduced in the article On Maximum-Likelihood Detection and the Search for the Closest Lattice Point, which was published by M.O. Damen, H. El Gamal and G. Caire in 2003. We concentrate especially on its computational complexity when used in space–time coding. Computer simulations are used to study how different system parameters affect the computational complexity of the algorithm. The aim is to find ways to improve the algorithm from the complexity point of view. The main contribution of the thesis is the construction of two new modifications to the sphere decoding algorithm, which are shown to perform faster than the original algorithm within a range of system parameters.
Resumo:
A company’s competence to manage its product portfolio complexity is becoming critically important in the rapidly changing business environment. The continuous evolvement of customer needs, the competitive market environment and internal product development lead to increasing complexity in product portfolios. The companies that manage the complexity in product development are more profitable in the long run. The complexity derives from product development and management processes where the new product variant development is not managed efficiently. Complexity is managed with modularization which is a method that divides the product structure into modules. In modularization, it is essential to take into account the trade-off between the perceived customer value and the module or component commonality across the products. Another goal is to enable the product configuration to be more flexible. The benefits are achieved through optimizing complexity in module offering and deriving the new product variants more flexibly and accurately. The developed modularization process includes the process steps for preparation, mapping the current situation, the creation of a modular strategy and implementing the strategy. Also the organization and support systems have to be adapted to follow-up targets and to execute modularization in practice.
Disturbing Whiteness: The Complexity of White Female Identity in Selected Works by Joyce Carol Oates
Resumo:
This thesis describes an approach to overcoming the complexity of software product management (SPM) and consists of several studies that investigate the activities and roles in product management, as well as issues related to the adoption of software product management. The thesis focuses on organizations that have started the adoption of SPM but faced difficulties due to its complexity and fuzziness and suggests the frameworks for overcoming these challenges using the principles of decomposition and iterative improvements. The research process consisted of three phases, each of which provided complementary results and empirical observation to the problem of overcoming the complexity of SPM. Overall, product management processes and practices in 13 companies were studied and analysed. Moreover, additional data was collected with a survey conducted worldwide. The collected data were analysed using the grounded theory (GT) to identify the possible ways to overcome the complexity of SPM. Complementary research methods, like elements of the Theory of Constraints were used for deeper data analysis. The results of the thesis indicate that the decomposition of SPM activities depending on the specific characteristics of companies and roles is a useful approach for simplifying the existing SPM frameworks. Companies would benefit from the results by adopting SPM activities more efficiently and effectively and spending fewer resources on its adoption by concentrating on the most important SPM activities.
Resumo:
Complex System is any system that presents involved behavior, and is hard to be modeled by using the reductionist approach of successive subdivision, searching for ''elementary'' constituents. Nature provides us with plenty of examples of these systems, in fields as diverse as biology, chemistry, geology, physics, and fluid mechanics, and engineering. What happens, in general, is that for these systems we have a situation where a large number of both attracting and unstable chaotic sets coexist. As a result, we can have a rich and varied dynamical behavior, where many competing behaviors coexist. In this work, we present and discuss simple mechanical systems that are nice paradigms of Complex System, when they are subjected to random external noise. We argue that systems with few degrees of freedom can present the same complex behavior under quite general conditions.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.
Resumo:
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
The effects of a complexly worded counterattitudinal appeal on laypeople's attitudes toward a legal issue were examined, using the Elaboration Likelihood Model (ELM) of persuasion as a theoretical framework. This model states that persuasion can result from the elaboration and scrutiny of the message arguments (i.e., central route processing), or can result from less cognitively effortful strategies, such as relying on source characteristics as a cue to message validity (i.e., peripheral route processing). One hundred and sixty-seven undergraduates (85 men and 81 women) listened to eitller a low status or high status source deliver a counterattitudinal speech on a legal issue. The speech was designed to contain strong or weak arguments. These arguments were 'worded in a simple and, therefore, easy to comprehend manner, or in a complex and, therefore, difficult to comprehend manner. Thus, there were three experimental manipulations: argument comprehensibility (easy to comprehend vs. difficult to comprehend), argumel11 strength (weak vs. strong), and source status (low vs. high). After listening to tIle speec.J] participants completed a measure 'of their attitude toward the legal issue, a thought listil1g task, an argument recall task,manipulation checks, measures of motivation to process the message, and measures of mood. As a result of the failure of the argument strength manipulation, only the effects of the comprehel1sibility and source status manipulations were tested. There was, however, some evidence of more central route processing in the easy comprehension condition than in the difficult comprehension condition, as predicted. Significant correlations were found between attitude and favourable and unfavourable thoughts about the legal issue with easy to comprehend arguments; whereas, there was a correlation only between attitude and favourable thoughts 11 toward the issue with difficult to comprehend arguments, suggesting, perhaps, that central route processing, \vhich involves argument scrutiny and elaboration, occurred under conditions of easy comprehension to a greater extent than under conditions of difficult comprehension. The results also revealed, among other findings, several significant effects of gender. Men had more favourable attitudes toward the legal issue than did women, men recalled more arguments from the speech than did women, men were less frustrated while listening to the speech than were ,vomen, and men put more effort into thinking about the message arguments than did women. When the arguments were difficult to comprehend, men had more favourable thoughts and fewer unfavourable thoughts about the legal issue than did women. Men and women may have had different affective responses to the issue of plea bargaining (with women responding more negatively than men), especially in light of a local and controversial plea bargain that occurred around the time of this study. Such pre-existing gender differences may have led to tIle lower frustration, the greater effort, the greater recall, and more positive attitudes for men than for WOlnen. Results· from this study suggest that current cognitive models of persuasion may not be very applicable to controversial issues which elicit strong emotional responses. Finally, these data indicate that affective responses, the controversial and emotional nature ofthe issue, gender and other individual differences are important considerations when experts are attempting to persuade laypeople toward a counterattitudinal position.
Resumo:
As the complexity of evolutionary design problems grow, so too must the quality of solutions scale to that complexity. In this research, we develop a genetic programming system with individuals encoded as tree-based generative representations to address scalability. This system is capable of multi-objective evaluation using a ranked sum scoring strategy. We examine Hornby's features and measures of modularity, reuse and hierarchy in evolutionary design problems. Experiments are carried out, using the system to generate three-dimensional forms, and analyses of feature characteristics such as modularity, reuse and hierarchy were performed. This work expands on that of Hornby's, by examining a new and more difficult problem domain. The results from these experiments show that individuals encoded with those three features performed best overall. It is also seen, that the measures of complexity conform to the results of Hornby. Moving forward with only this best performing encoding, the system was applied to the generation of three-dimensional external building architecture. One objective considered was passive solar performance, in which the system was challenged with generating forms that optimize exposure to the Sun. The results from these and other experiments satisfied the requirements. The system was shown to scale well to the architectural problems studied.
Resumo:
In this paper we show that lobbying in conditions of “direct democracy” is virtually impossible, even in conditions of complete information about voters preferences, since it would require solving a very computationally hard problem. We use the apparatus of parametrized complexity for this purpose.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal